博碩士論文 106324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.147.103.8
姓名 鄭筑勻(Chu-Yun Cheng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
相關論文
★ 利用半圓柱型吸附塔進行變壓吸附程序分離空氣之模擬研究★ 利用熱交換吸附塔結構設計之變壓吸附程序分離空氣製氧之模擬研究
★ 雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析★ 合成氣經富氧燃燒後利用雙塔變壓吸附程序純化二氧化碳之實驗
★ 以變壓吸附程序捕獲發電廠煙道氣中二氧化碳及濃縮合成氣經富氧燃燒後中二氧化碳之研究與實驗設計分析★ 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了減少二氧化碳的排放量,可利用變壓吸附法捕獲煙道氣中二氧化碳,變壓吸附法為一種連續性循環程序氣體吸附分離技術,利用吸附劑對氣體混合物中各成分之不同吸附選擇性來分離氣體,具有低能耗、低操作成本與簡單操作等優點,本研究目的為捕獲燃煤及燃氣電廠1kW等級煙道氣中二氧化碳,使得塔底產物二氧化碳達到純度85%以上及塔頂氮氣90%以上。
第一步以實驗數據中各氣體成份CO2、N2對吸附劑的平衡吸附量進行迴歸得到等溫吸附模型所需參數後,選用線性驅動力質傳模式(Linear Driving Force model, LDF),藉由突破曲線實驗及脫附實驗驗證 理論計算具有相當高的可信度,並利用三塔九步驟程序捕獲電廠煙道氣100小時穩態實驗與模擬結果進行驗證,更加一步確認模擬程式的準確性。
將研究內容分為兩部分,皆選用EIKME 13X沸石為吸附劑。第一部份利用三塔九步驟變壓吸附系統,以1kW等級亞臨界燃煤鍋爐煙道氣,經除硫、除水後之13.5%二氧化碳與86.5%氮氣為進料,進料流量為60.00 L/min (NTP),得到在進料壓力3 atm,進料溫度303.14K,抽真空壓力0.07 atm,同向減壓壓力0.25 atm吸附時間430秒,同向減壓時間80秒,抽真空時間300秒,壓力平衡時間50秒,塔底產物二氧化碳純度為85.96 %,回收率82.09 %,塔頂產物氮氣純度為97.61 %,回收率92.05%,能耗為1.06-1.24 GJ/tonne-CO2。為了有效找出最佳操作條件,利用實驗設計(Design of Experiment, DOE),結合變異數分析(Analysis of Variance, ANOVA)和反應曲面法(Response Surface Methodology, RSM)二階模型,進行中央合成設計實驗(Central Composite Design, CCD),並結合迴歸分析計算出純度極大值、回收率極大值、能耗極小值、最適化所需之操作條件,當進料壓力3.66 atm、抽真空壓力0.05 atm、同向減壓壓力0.3 atm、環境溫度323.14 K、步驟1/4/7時間94秒、步驟2/5/8時間350秒、塔長46公分的操作條件下,能得到塔底產物二氧化碳純度89.20 %,回收率88.20%,塔頂產物氮氣純度98.49 %,回收率93.56 %,能耗為1.17-1.41 GJ/tonne CO2的最適化結果。
第二部分探討1kW等級燃氣電廠煙道氣,經除硫、除水後之5%二氧化碳與95%氮氣,利用三塔九步驟變壓吸附程序進行模擬,得到在進料壓力4 atm,進料溫度303.14K,抽真空壓力0.05 atm,同向減壓壓力0.2 atm,吸附時間620秒,同向減壓時間120秒,抽真空時間450秒,壓力平衡時間50秒,進料流量132.59 L/min (NTP)的操作條件下,得到塔底產物二氧化碳純度為86.31 %,回收率65.50 %,塔頂產物氮氣純度為98.36%,回收率96.83 %,能耗為4.03-4.93 GJ/tonne-CO2。
摘要(英) In order to reduce carbon dioxide emissions, we use pressure swing adsorption process to capture carbon dioxide from flue gas in a thermal power plan . Pressure swing adsorption (PSA) is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. Pressure swing adsorption plays an important role in the separation of gas mixtures with its low energy consumption, low investment, and simple operation. This study aims to capture carbon dioxide from flue gas of 1kW coal-fired and gas-fired power plant by PSA process for bottom product CO2 purity 85% and top product N2 purity 90%.
To validate the accuracy of PSA program, the extended Langmuir-Freundlich equation was adopted to fit isotherm to describe the adsorption equilibrium of adsorbent. Next, we used linear driving force (LDF) model and compared the results of breakthrough curves and desorption curves between experiments and simulation to verify the accuracy of mass transfer coefficient kLDF value. We further verified the simulation with the 100 hours steady state experiment of 3-bed 9-step PSA process .
Next, this study could be divided into 2 parts and both of them used EIKME 13X zeolite as adorbent. For the first part of study, a 3-bed 9-step pressure swing adsorption (PSA) process for flue gas after desulphurization and water removal (13.5 % CO2, 86.5% N2) of subcritical 1kW- coal-fired power plant was designed. After simulation, we obtained a bottom product CO2 purity at 85.96% with 82.09% recovery, and a top product N2 purity at 97.61 % with 92.05% recovery while at feed flow rate 60 L/min (NTP), feed pressure 3 atm, vacuum pressure 0.05 atm, feed temperature 303.14 K, adsorption time 430 s, cocurrent time 80 s, vacuum time 300 s, and pressurization equilibrium time 50 s. The mechanical energy consumption was estimated to be 1.06-1.24 GJ/tonne-CO2. In order to find the optimal operating conditions, we combined the results of 1kW-power plant flue gas PSA process with design of experiments (DOE) method. After analysis, we obtained a bottom product CO2 purity at 89.20% with 88.20% recovery, and a top product N2 purity at 98.49 % with 93.56 % recovery while at feed pressure 3.66 atm, vacuum pressure 0.05 atm, cocurrent depressurization 0.3 atm , surrounding temperature 323.14 K, step 1/4/7 time 94 s, step 2/5/8 time 350 s, bed length 46cm as the optimal results. The mechanical energy consumption was estimated to be 1.17-1.41 GJ/tonne-CO2.
For the second part of study, we use same process for capturing CO2 from flue gas of a power plant with natural gas as fuel. The composition of flue gas was assumed 5% CO2 and 95% N2 .After simulation, we obtained a bottom product CO2 purity at 86.31 % with 65.50 % recovery , and a top product N2 purity at 98.36% with 96.83 % recovery while at feed flow rate 132.59 L/min (NTP), feed pressure 4 atm, vacuum pressure 0.05 atm, cocurrent depressurization pressure 0.2 atm, feed temperature 303.14 K, adsorption time 620 s, cocurrent time 120 s, vacuum time 450 s, and pressurization equilibrium time 50 s. The mechanical energy consumption was estimated to be 4.03-4.93 GJ/tonne-CO2.
關鍵字(中) ★ 變壓吸附
★ 二氧化碳捕獲
★ 燃燒後捕獲
★ 實驗設計分析
關鍵字(英) ★ Pressure Swing Adsorption
★ CO2 capture
★ Post-combustion
★ Design of Experiments Analysis
論文目次 摘要 i
ABSTRACT iii
誌謝 vi
目錄 vii
圖目錄 xi
表目錄 xvii
第一章、緒論 1
第二章、簡介及文獻回顧 7
2-1 吸附之簡介 7
2-1-1 吸附基本原理 7
2-1-2 吸附劑及其選擇性 10
2-2 文獻回顧 12
2-2-1 PSA程序之發展與改進 12
2-2-2 理論之回顧 17
2-3文獻回顧與研究目的 19
2-3-1 變壓吸附程序純化氧氣之應用 19
2-3-2 變壓吸附程序純化二氧化碳之應用 21
2-3-3 工業上實驗設計方法應用 29
2-3-4 研究目的 30
第三章、理論 31
3-1基本假設 32
3-2統制方程式 33
3-3吸附平衡關係式 38
3-3-1 等溫吸附平衡關係式 38
3-3-2 質傳驅動力模式(Driving force model) 39
3-3-3 吸附熱關係式 39
3-4參數推導 40
3-4-1 軸向分散係數(Axial dispersion coefficient) 40
3-4-2 熱傳係數(Overall heat-transfer coefficient) 43
3-4-3線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 46
3-5邊界條件與流速 50
3-5-1 邊界條件與節點流速 50
3-5-2 閥公式 51
3-6求解步驟 52
第四章、等溫平衡吸附曲線與吸脫附曲線 55
4-1吸附平衡(Adsorption equilibrium) 56
4-1-1 氣體與吸附劑性質 56
4-1-2 等溫平衡吸附曲線(Isotherm) 58
4-2吸附動力學(Adsorption kinetics) 61
4-2-1 實驗室規模吸附塔之突破曲線模擬驗證 61
4-2-2 台中規模吸附塔之突破曲線模擬驗證 66
4-2-3 實驗室規模吸附塔之脫附實驗模擬驗證 71
第五章、製程描述 75
5-1三塔九步驟變壓吸附程序 76
5-2能耗及產率計算公式 80
第六章、數據分析與結果討論 82
6-1 三塔九步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 84
6-2 燃煤電廠煙道氣進料三塔九步驟變壓吸附程序之模擬結果 96
6-3 燃煤電廠煙道氣進料三塔九步驟變壓吸附程序模擬之實驗設計分析99
6-3-1 殘差分析圖(Analysis of residual plots) 100
6-3-2 變異數分析(Analysis of Variance, ANOVA) 104
6-3-3 主效用圖(Main effect plots)、交互作用圖(Interaction plots)與 標準化效應的常態機率圖(Normal plot of the standardized effects) 111
6-3-4 反應曲面法( Response Surface Methodology, RSM ) 116
6-3-5 迴歸分析( Regression analysis ) 126
6-3-6 最適化結果 131
6-4 燃氣電廠煙道氣進料三塔九步驟變壓吸附程序之模擬結果 136
6-5 能耗計算結果 140
第七章、結論 143
符號說明 145
附錄A、流速之估算方法 150
附錄B、名詞簡介 154
參考文獻 160
參考文獻 [1]蔡娪嫣, 今年溫室氣體破表!最新報告:全球每秒產生1175公噸CO2, https://www.storm.mg/article/685809, 2018.
[2]C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J.
Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P.P. Tans, O. D.
Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts and L. Bopp, Global Carbon Budget 2017, Earth System Science Data Discussions, 2018.
[3]邱一庭, 暖化的科學(3):二氧化碳與暖化, https://scitechvista.nat.gov.tw/c/sgZw.htm, 2018.
[4]台灣電力股份有限公司, https://www.taipower.com.tw/tc/page.aspx?mid=216, 2019.
[5]陳佳利, 燃氣新時代, https://ourisland.pts.org.tw/content/%E7%87%83%E6%B0%A3%E6%96%B0%E6%99%82%E4%BB%A3, 2017.
[6]冀樹勇,譚志豪,劉浙仁,全球暖化的減碳策略-碳捕捉與封存(CCS), Journal of
Professional Geotechnical Engineers,第9期, pp.32-39, 2014.
[7]能源局, 〈能源統計月報,發電量_歷年〉, https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142, 2018.
[8]A. A. Olajire, Valorization of Greenhouse Carbon Dioxide Emissions into Value-Added Products by Catalytic Processes, Journal of CO2 Utilization, vol. 3, pp. 74-92, 2013.
[9]楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[10]台灣綜合研究院, 最新發電與最新減碳相關技術分析, 2017.
[11]張育誠,吳國光,焦鴻文,簡國祥,歐陽湘, 富氧燃燒技術之應用與分析,台灣能源期刊, 2卷3期, pp.323-331, 2015.
[12]M. Zaman, J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal of Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[13]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[14]K. P. Resnik, Aqua Ammonia Process for Simultaneous Removal of CO2, SO2 and NOx, Int. J. Environmental Technology and Management, vol. 4, pp. 89-104, 2004.
[15]X. Pan, D. Clodic and J. Toubassy, CO2 Capture by Anti-Sublimation Process and Its Technical Economic Analysis, Greenhouse Gases: Science and Technology, vol. 3, pp. 8-20, 2013.
[16]National Energy Technology Laboratory, Case B11A Performance Results, Cost and Performance Baseline for Fossil Energy Plants, vol. 1a, 2015.
[17]D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[18]A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Carnegie Mellon University Press, Pittsburgh, 2010.
[19]R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[20]S. U. Rege, R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[21]C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[22]A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, Boston, 1988.
[23]W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[24]D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[25]P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[26]B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[27]K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[28]J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[29]S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[30]L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[31]A. Fuderer, E. Rudelstorfer, Selective Adsorption Process. US Patent 3986849, 1976.
[32]P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[33]R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[34]S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[35]E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[36]M. Mofarahi, E. J. Shokroo, Comparison of two pressure swing adsorption processes for air separation using zeolite 5A and zeolite 13X, Petroleum and Coal, 55(3), pp. 216-225, 2013.
[37]M. Xu, H. C. Wu, Y. S. Lin and S. G. Deng, Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents, Chemical Engineering Journal, vol. 354, pp. 62-74, 2018.
[38]C. X. Tian, Q. Fu, Z. Y. Ding, Z. Y. Han and D. H. Zhang, Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2, Separation and Purification Technology, vol. 189, pp. 54-65, 2017.
[39]L. Zhou, J. Li, Y. P. Zhou, W. Su and Y. Sun, Experimental studies of a new compact design four-bed psa equipment for producing oxygen, AlChE Journal, vol. 51, pp. 2695-2701, 2005.
[40]L. Zhou, X. F. Ouyang, W. Li, S. N. Li and Y. P. Zhou, Experiments of improving the performance of disk type psa columns in oxygen production, Sep. Sci. Technol., vol. 41, pp. 247-259, 2006.
[41]X. Zhu, Y. Liu, X. Yang and W. Liu, Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen, Adsorption, vol. 23(1), pp. 175-184, 2017.
[42]E. S. Kikkinides, R.T. Yang and S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. ,vol.32, pp.2714, 1993.
[43]J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle,Computers & Chemical Engineering, vol. 35, pp. 1010-1019,2011.
[44]C. Z. Shen, Z. Liu, P. Li and J. G. Yu, Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011-5021, 2012.
[45]D. Wawrzynczak, I. Majchrzak-Kuceba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smolka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[46]P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption, vol. 14, pp. 575-582, 2008.
[47]J. Zhang, P. A. Webley and P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[48]L. Wang, Z. Liu, P. Li, J. Wang and J. G. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption Journal of the International Adsorption Society, vol. 18, pp. 445-459, 2012.
[49]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[50]S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Carbon Dioxide Utilization for Global Sustainability, Studies in Surface Science and Catalysis, vol.153, pp.405-410, 2004.
[51]R Haghpanah,. R. Nilam, A.Rajendran, S.Farooq and I.A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AIChE Journal, vol.
59(12), pp.4735-4748, 2013.
[52]J. Ling, P. Xiao , A. Ntiamoah, D. Xu, P.Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology , Journal of Separation Science and Engineering, vol.24(4), pp.460-467, 2016.
[53]Q. Huang, M. Eić, Commercial Adsorbents as Benchmark Materials for Separation of Carbon Dioxide and Nitrogen by Vacuum Swing Adsorption Process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[54]R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186-9198, 2014.
[55]Z. Liu, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas, Separation and Purification Technology, vol.81(3), pp. 307-317, 2011.
[56]Z. Liu, L. Wang, X. Kong, P. Li, J. Yu and A.E. Rodrigues, Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant, Industrial & Engineering Chemistry Research, vol. 51, pp.7355-7363, 2012.
[57]L. Riboldi, O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol.39, pp 1-16, 2015.
[58]Y. Shen, Y. Zhou, D. Li, Q. Fu, D. Zhang and P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, International Journal of Greenhouse Gas Control, vol.65, pp 55-64, 2017.
[59]G.N. Nikolaidis, E.S. Kikkinides and M.C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg- MOF-74, Industrial and Engineering Chemistry Research, vol.56(4), pp 974-988, 2017.
[60]J.A.A. Gibson, E. Mangano, E. Shiko, A.G. Greenaway, A.V. Gromov, M. M. Lozinska, D. Friedrich, E. E. B. Campbell, P.A. Wright and S. Brandani, Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants: AMPGas, Industrial and Engineering Chemistry Research, vol.55(13), pp 3840-3851, 2016.
[61]S. Gao, L. Liu, A. Frank, J. Wang, M. Chris, D. Guo, C. Keith, H. Niu, D. Joanna, X. Wang, S. Wang, B. Roberto and S. Xu, China′s first pilot-scale demonstration of post-combustion CO2 capture from a natural-gas-fired power plant, Greenhouse Gases: Science and Technology, vol.6(2), pp. 178-187, 2016.
[62]P. E. Jahromi, S. Fatemi and A. Vatani, Effective Design of a Vacuum Pressure Swing Adsorption Process to Recover Dilute Helium from a Natural Gas Source in a Methane-Rich Mixture with Nitrogen, Industrial and Engineering Chemistry Research, vol.57(38), pp.12895-12908, 2018.
[63]A. M. Ghaedi, S. Karamipour, A. Vafaei, M.M. Baneshi and V. Kiarostami, Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network, Ultrasonics Sonochemistry, vol 51, pp. 264-280,2019.
[64]J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[65]D. Duong, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[66]C. Y. Wen, L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[67]R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[68]E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Gas Chromatography, vol. 3, pp. 222-227, 1965.
[69]E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[70]D. F. Fairbanks, C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[71]W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[72]W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[73]S. Farooq, D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one- Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[74]N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[75]G. Carta, A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[76]J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[77]M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[78]K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[79]H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[80]X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[81]P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[82]李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學, 碩士論文, 2015.
[83]J. M. Smith, H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, Singapore, 1987.
[84]顏志捷, 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計, 國立中央大學碩士論文, 2019.
[85]Y. A. Cengel, M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill, New York, 2004.
[86]A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[87]K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[88]R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[89]R. G. Lomax, D. L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[90]田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[91]G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[92]R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[93]葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[94]A. Bandyopadhyay, Amine Versus Ammonia Absorption of CO2 as a Measure of Reducing GHG Emission: A Critical Analysis, Clean Technologies and Environmental Policy, vol. 13, pp. 269-294, 2011.
指導教授 周正堂 楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明