博碩士論文 106324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.207.240.230
姓名 林于廷(Yu-Ting Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 開發促進傷口癒合之複合敷料
(The Development of Composite Dressings to Promote Wound Healing)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 慢性傷口癒合緩慢,可能會造成很多風險與生活上的不便,因此本研究欲開發多功能傷口敷料以促進組織再生。我們以雙噴射電紡絲系統將褐藻酸鈉與聚己內酯(poly (ε-caprolactone),PCL)混紡成多功能複合納米纖維。其中親水性的褐藻酸鈉纖維具高吸收性,可以在傷口部位提供潮濕環境,PCL則可增加機械強度並促進細胞貼附。將奈米銀導入PCL纖維中使其可以持續抑制微生物的生長。由於血小板衍生生長因子(platelet-derived growth factor B,PDGFB)是嗜中性粒細胞的化學引誘物並且可以誘導成纖維細胞的增殖和分化,進而促進傷口修復,因此我們將PDGFB質粒DNA與聚乙烯亞胺(PEI)所複合成的正電性奈米顆粒通過靜電相互作用吸附於複合纖維中的陰離子褐藻酸鈉纖維上。當傷口細胞貼附到複合纖維時將被原位轉染,而這些被轉染的細胞將可連續表達PDGFB。此外,褐藻酸鈉纖維中的鈣離子通過離子交換釋放到傷口部位以加速止血。這種全面的敷料為慢性傷口的治療提供了理想的解決方案。
摘要(英) Chronic wounds may retard the healing process to cause many risks. Therefore, it is essential to develop a multifunctional wound dressing to promote tissue regeneration. To fabricate a versatile composite nanofibrous matrix, sodium alginate and poly (ε-caprolactone) (PCL) were coelectrospun as composite nanofibers using a dual jet system. Hydrophilic alginate fibers may provide a moist environment in wound sites. In addition, PCL were applied to increase mechanical strength and cell adhesion. Silver nanoparticles were embedded in PCL fibers for long-term release to inhibit the growth of microorganism. Plasmid DNA encoding platelet-derived growth factor B(PDGFB) was delivered from composite fibers because this growth factor is a chemoattractant for neutrophils and can induce the proliferation and differentiation of fibroblasts. These PDGFB plasmids were complexed with polyethylenimine (PEI) to form cationic nanoparticles which may thus be adsorbed onto anionic alginate fibers through electrostatic interaction. As wound cells adhered to composite fibers, they can be in situ transfected to continuously express PDGFB. Moreover, calcium ions in alginate fibers were released to wound sites through ion exchange to accelerate hemostasis. This comprehensive dressing provides an ideal solution to heal chronic wounds.
關鍵字(中) ★ 電紡絲
★ 傷口敷料
★ 奈米銀
★ 血小板衍生生長因子B
關鍵字(英)
論文目次 摘要 v
Abstract vi
致謝 vii
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1-1研究背景 1
1-2研究目的 3
第二章 文獻回顧 4
2-1電紡絲 4
2-1-1電紡絲原理 4
2-1-2 製備複合電紡絲 5
2-1-3 複合電紡絲的應用 7
2-2 褐藻酸鈉 10
2-2-1 褐藻酸鈉之簡介 10
2-2-2 褐藻酸鈉之性質 10
2-2-3 褐藻酸鈉的應用 14
2-3 聚己內酯 16
2-3-1聚己內酯之簡介 16
2-3-2聚己內酯之性質 17
2-3-3 聚己內酯的應用 17
2-4 奈米銀 19
2-4-1奈米銀之簡介 19
2-4-2奈米銀之抗菌功能 20
2-4-3奈米銀於傷口敷料的應用 23
2-5調節傷口癒合的生長因子 26
2-6基因治療 28
2-6-1載體 29
2-6-2基因治療的應用 29
第三章 實驗藥品與方法 31
3-1實驗原料及藥品 31
3-2實驗儀器 35
3-3實驗方法 37
3-3-1電紡絲溶液製備 37
3-3-2奈米銀製備 38
3-3-3電紡絲纖維製備 39
3-3-4電紡絲纖維收集量之量測 40
3-3-5溶液配製 40
3-3-6 NIH 3T3細胞培養 42
3-3-7 SEM之樣本製備 44
3-3-8TEM樣本製備 46
3-3-9XRD樣本製備 46
3-3-10FTIR/ATR樣本製備 46
3-3-11TGA、DSC樣本製備 46
3-3-12細胞存活率實驗(MTT assay) 47
3-3-13 質體DNA(PDGFB) 純化 48
3-3-14原位轉染實驗 49
3-3-15測量PDGFB釋放實驗 51
3-3-16抗菌實驗 53
3-3-17奈米銀檢測[61] 55
3-3-18凝血實驗[62] 56
3-3-19 傷口癒合動物實驗 57
第四章 結果與討論 59
4-1褐藻酸鈉/聚己內酯/奈米銀之複合電紡絲性質 59
4-1-1電紡絲之收集量與直徑分佈 59
4-1-2奈米銀於電紡絲中之型態與分析 65
4-1-3複合電紡絲之收集 73
4-2複合電紡絲之抗菌活性 74
4-2-1液態培養之抗菌活性 74
4-2-2固態培養之抗菌活性 77
4-3複合電紡絲對細胞之影響 79
4-3-1細胞於複合纖維上培養之SEM圖 79
4-3-2細胞於複合纖維上培養之存活率 80
4-4複合電紡絲之奈米銀釋放 82
4-5於複合電紡絲上進行原位轉染PDGFB 85
4-5-1原位轉染之螢光影像 85
4-5-2原位轉染後分析細胞增殖率與PDGFB釋放 87
4-6複合電紡絲之凝血測試 90
4-7 傷口癒合動物實驗 92
第五章 結論 96
參考資料 99
參考文獻 1. Deutsch, C.J., Edwards, D.M., and Myers, S., Wound dressings. British Journal of Hospital Medicine, 2017. 78(7): p. C103-C109.
2. Guo, S. and Dipietro, L.A., Factors affecting wound healing. Journal of Dental Research, 2010. 89(3): p. 219-229.
3. Rani, S. and Ritter, T., The Exosome‐A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced Materials, 2016. 28(27): p. 5542-5552.
4. 食品藥物管理署., 燒燙傷救星—傷口敷料, 106年衛生福利部新聞, Editor. 2017.
5. 陳筱蓉. 傷口癒合機轉. [Internet] 2017; Available from: http://www.tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf.
6. Senthil, R., Berly, R., Bhargavi Ram, T., and Gobi, N., Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. The International Journal of Artificial Organs, 2018. 41(8): p. 467-473.
7. Casasola, R., Thomas, N.L., Trybala, A., and Georgiadou, S., Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014. 55(18): p. 4728-4737.
8. Ziabari, M., Mottaghitalab, V., and Haghi, A.K., Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 2009. 26(1): p. 53-62.
9. 林政賢, 利用聚己內酯/褐藻酸鈉之複合電紡絲 擴增癌症幹細胞. 國立中央大學 化學工程與材料工程學系 碩士論文, 2016.
10. Tan, L., Hu, J., Huang, H., Han, J., and Hu, H., Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. International Journal of Biological Macromolecules, 2015. 79: p. 469-476.
11. Mokhena, T.C. and Luyt, A.S., Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydrate Polymers, 2017. 165: p. 304-312.
12. Rath, G., Hussain, T., Chauhan, G., Garg, T., and Goyal, A.K., Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. Journal of Drug Targeting, 2016. 24(6): p. 520-529.
13. Trinca, R.B., Westin, C.B., da Silva, J.A.F., and Moraes, Â.M., Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. European Polymer Journal, 2017. 88: p. 161-170.
14. Yildirimer, L. and Seifalian, A.M., Three-dimensional biomaterial degradation - Material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014. 32(5): p. 984-999.
15. Augustine, R., Kalarikkal, N., and Thomas, S., Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Applied Nanoscience, 2015. 6(3): p. 337-344.
16. Alippilakkotte, S., Kumar, S., and Sreejith, L., Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 529: p. 771-782.
17. Jaganathan, S.K. and Mani, M.P., Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications. Journal of Applied Polymer Science, 2019. 136(3): p. 46942-46951.
18. Ren, K., Wang, Y., Sun, T., Yue, W., and Zhang, H., Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering: C, 2017. 78: p. 324-332.
19. Aktar, B., Erdal, M., Sagirli, O., Güngör, S., and Özsoy, Y., Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach. Polymers, 2014. 6(5): p. 1350-1365.
20. Costa, M.J., Marques, A.M., Pastrana, L.M., Teixeira, J.A., Sillankorva, S.M., and Cerqueira, M.A., Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 2018. 81: p. 442-448.
21. Taskin, A.K., Yasar, M., Ozaydin, I., Kaya, B., Bat, O., Ankarali, S., Yildirim, U., and Aydin, M., The hemostatic effect of calcium alginate in experimental splenic injury model. Ulus Travma Acil Cerrahi Derg, 2013. 19(3): p. 195-199.
22. Dhage, H. Blood Clotting: Mechanisms and Stages. Biology Discussion; Available from: http://www.biologydiscussion.com/hematology-2/blood-clotting/blood-clotting-mechanisms-and-stages-blood-hematology-biology/80456.
23. Wang, C., Luo, W., Li, P., Li, S., Yang, Z., Hu, Z., Liu, Y., and Ao, N., Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydrate Polymers, 2017. 174: p. 432-442.
24. Osathanon, T., Chanjavanakul, P., Kongdecha, P., Clayhan, P., and Huynh, N.C.-N., Polycaprolactone-Based Biomaterials for Guided Tissue Regeneration Membrane, in Periodontitis - A Useful Reference,Chapter 8. 2017, (Intech). p. 171-188.
25. Zhang, S., Campagne, C., and Salaün, F., Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Applied Sciences, 2019. 9(3): p. 402-438.
26. Augustine, R., Dominic, E.A., Reju, I., Kaimal, B., Kalarikkal, N., and Thomas, S., Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances, 2014. 4(47): p. 24777-24786.
27. Moura, L.I., Dias, A.M., Carvalho, E., and de Sousa, H.C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomaterialia, 2013. 9(7): p. 7093-7114.
28. Pinzon-Garcia, A.D., Cassini-Vieira, P., Ribeiro, C.C., de Matos Jensen, C.E., Barcelos, L.S., Cortes, M.E., and Sinisterra, R.D., Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017. 105(7): p. 1938-1949.
29. Xie, P., Ji, W., and Wei, Z., Preparation and Properties of Silver Nanoparticles. Characterization and Application of Nanomaterials, 2018. 1(1): p. 40-48.
30. 呂晃志. 揭開抗菌、防腐的神奇面紗 ─奈米銀. 2007; Available from: https://www.foryou8888.com/static/website/53/53211/files/%E5%A5%88%E7%B1%B3%E9%8A%80.pdf.
31. Barani, H., Boroumand, M.N., and Rafiei, S., Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics. Fibers and Polymers, 2017. 18(4): p. 658-665.
32. Lakshman, L.R., Shalumon, K.T., Nair, S.V., Jayakumar, R., and Nair, S.V., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Journal of Macromolecular Science, Part A, 2010. 47(10): p. 1012-1018.
33. 羅翊瑋, 楊水平, 化學實驗室實驗:銀奈米粒子的合成(Synthesis of Silver Nanoparticles)[I]. 高瞻自然科學教學資源平台 2011; Available from: http://highscope.ch.ntu.edu.tw/wordpress/?p=30347.
34. Deshmukh, S.P., Patil, S.M., Mullani, S.B., and Delekar, S.D., Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering C, 2019. 97: p. 954-965.
35. Fewtrell, L. Silver: water disinfection and toxicity. 2014; 1-53. Available from: https://www.novozone.co.nz/pdf/Silver_water_disinfection.pdf.
36. Carbone, M., Donia, D.T., Sabbatella, G., and Antiochia, R., Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science, 2016. 28(4): p. 273-279.
37. Ahmadi, F., Abolghasemi, S., Parhizgari, N., and Moradpour, F., Effect of Silver Nanoparticles on Common Bacteria in Hospital Surfaces. Jundishapur Journal of Microbiology, 2013. 6(3): p. 209-214.
38. Yan, X., He, B., Liu, L., Qu, G., Shi, J., Hu, L., and Jiang, G., Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 2018. 10(4): p. 557-564.
39. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ram´ırez, J.T., and Yacaman, M.J., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346-2353.
40. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F., and Che, C.M., Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 2006. 5(4): p. 916-924.
41. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., and Cho, M.H., Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007. 3(1): p. 95-101.
42. Murphy, M., Ting, K., Zhang, X., Soo, C., and Zheng, Z., Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. Journal of Nanomaterials, 2015. 2015: p. 1-12.
43. GhavamiNejad, A., Rajan Unnithan, A., Ramachandra Kurup Sasikala, A., Samarikhalaj, M., Thomas, R.G., Jeong, Y.Y., Nasseri, S., Murugesan, P., Wu, D., Hee Park, C., and Kim, C.S., Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Applied Materials & Interfaces, 2015. 7(22): p. 12176-12183.
44. Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., and Tomic-Canic, M., Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 2008. 16(5): p. 585-601.
45. Ohnstedt, E., Lofton Tomenius, H., Vagesjo, E., and Phillipson, M., The discovery and development of topical medicines for wound healing. Expert Opinion on Drug Discovery, 2019. 14(5): p. 485-497.
46. Blakytny, R. and Jude, E., The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Medicine, 2006. 23(6): p. 594-608.
47. Sil, S., Periyasamy, P., Thangaraj, A., Chivero, E.T., and Buch, S., PDGF/PDGFR axis in the neural systems. Molecular Aspects of medicine, 2018. 62: p. 63-74.
48. Yamakawa, S. and Hayashida, K., Advances in surgical applications of growth factors for wound healing. Burns & Trauma, 2019. 7(1): p. 10-23.
49. Breitbart, A.S., Laser, J., Parrett, B., Porti, D., Grant, R.T., Grande, D.A., and Mason, J.M., Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Annals of Plastic Surgery, 2003. 51(4): p. 409-414.
50. Pierce, G.F., Tarpley, J.E., Yanagihara, D., Mustoe, T., Fox, G.M., and Thomason, A., Platelet-derived Growth Factor (BB Homodimer), Transforming Growth Factor-r1, and Basic Fibroblast Growth Factor in Dermal Wound Healing. The American Journal of Pathology, 1992. 140(6): p. 1375-1388.
51. Kaltalioglu, K., Coskun-Cevher, S., Tugcu-Demiroz, F., and Celebi, N., PDGF supplementation alters oxidative events in wound healing process: a time course study. Archives of Dermatological Research, 2013. 305(5): p. 415-422.
52. Li, H., Fu, X., Zhang, L., Huang, Q., Wu, Z., and Sun, T., Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. Journal of Surgical Research, 2008. 145(1): p. 41-48.
53. Man, L.-X., Park, J.C., Terry, M.J., Mason, J.M., Burrell, W.A., Liu, F., Kimball, B.Y., Moorji, S.M., Lee, J.A., and Breitbart, A.S., Lentiviral Gene Therapy With Platelet-Derived Growth Factor B Sustains Accelerated Healing of Diabetic Wounds Over Time. Annals of Plastic Surgery, 2005. 55(1): p. 81-86.
54. Jinnin, M., Ihn, H., Mimura, Y., Asano, Y., Yamane, K., and Tamaki, K., Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. Journal of Cellular Physiology, 2005. 202(2): p. 510-517.
55. Keswani, S.G., Katz, A.B., Lim, F.Y., Zoltick, P., Radu, A., Alaee, D., and Crombleholme, T.M., Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds. Wound Repair and Regeneration, 2004. 12(5): p. 497-512.
56. Zielins, E.R., Brett, E.A., Luan, A., Hu, M.S., Walmsley, G.G., Paik, K., and Wan, D.C., Emerging drugs for the treatment of wound healing. Expert Opinion on Emerging Drugs, 2015. 20(2): p. 235-246.
57. 劉宜旻, Indolicidin 之二聚體形式對輸送去氧寡核苷酸的影響. 國立中央大學 化學工程與材料工程學系 碩士論文, 2018.
58. Collins, M. and Thrasher, A., Gene therapy: progress and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015. 282(1821): p. 20143003-20143011.
59. 胡哲誠, 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維 進行原位轉染. 國立中央大學 化學工程與材料工程學系 碩士論文, 2014.
60. Zhang, Y., Ma, Y., Wu, C., Miron, R.J., and Cheng, X., Platelet-derived growth factor BB gene-released scaffolds: biosynthesis and characterization. Journal of Tissue Engineering and Regenerative Medicine, 2016. 10(10): p. E372-E381.
61. Gonzalez-Fuenzalida, R.A., Moliner-Martinez, Y., Gonzalez-Bejar, M., Molins-Legua, C., Verdu-Andres, J., Perez-Prieto, J., and Campins-Falco, P., In situ colorimetric quantification of silver cations in the presence of silver nanoparticles. Analytical Chemistry, 2013. 85(21): p. 10013-10016.
62. Park, J.-Y., Kyung, K.-H., Tsukada, K., Kim, S.-H., and Shiratori, S., Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017. 123: p. 194-202.
63. Sumitha, M.S., Shalumon, K.T., Sreeja, V.N., Jayakumar, R., Nair, S.V., and Menon, D., Biocompatible and Antibacterial Nanofibrous Poly(ϵ-caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science, Part A, 2012. 49(2): p. 131-138.
64. Khalil, A.K., Fouad, H., Elsarnagawy, T., and Almajhdi, F.N., Preparation and Characterization of Electrospun PLGA/silver Composite Nanofibers for Biomedical Applications. International Journal of Electrochemical Science, 2013. 8(3): p. 3483-3493.
65. Jia, Y., Huang, G., Dong, F., Liu, Q., and Nie, W., Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 2016. 37(9): p. 2847-2854.
66. Safaeijavan, R., Soleimani, M., Divsalar, A., Eidi, A., and Ardeshirylajimi, A., Biological behavior study of gelatin coated PCL nanofiberous electrospun scaffolds using fibroblasts. Journal of Paramedical Sciences Winter, 2014. 5: p. 67-73.
67. Shkarina, S., Shkarin, R., Weinhardt, V., Melnik, E., Vacun, G., Kluger, P.J., Loza, K., Epple, M., Ivlev, S.I., Baumbach, T., Surmeneva, M.A., and Surmenev, R.A., 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study. Scientific Reports, 2018. 8(1): p. 8907-8920.
68. Kumar, P.T.S., Abhilash, S., Manzoor, K., Nair, S.V., Tamura, H., and Jayakumar, R., Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers, 2010. 80(3): p. 761-767.
69. Dubey, P., Bhushan, B., Sachdev, A., Matai, I., Uday Kumar, S., and Gopinath, P., Silver-nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. Journal of Applied Polymer Science, 2015. 132(35): p. 42473-42485.
70. Xu, Y.J., Zuo, L.G., Qian, X., and Wang, J.Y., Preparation and Characterization of Cellulose-Silver Nanocomposites by in situ Reduction with Alkalis as Activation Reagent. BioResources, 2016. 11(1): p. 2797-2808.
71. Cerkez, I., Sezer, A., and Bhullar, S.K., Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality. Royal Society open science, 2017. 4(2): p. 160911-160919.
72. Liua, S., Zhengc, Z., Wangb, S., Chena, S., Maa, J., Liua, G., Wangb, B., and Li, J., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent. Carbohydrate Polymers, 2019: p. 115175-115201.
73. Plonka, A.B., Khorsand, B., Yu, N., Sugai, J.V., Salem, A.K., Giannobile, W.V., and Elangovan, S., Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 2017. 24(1): p. 31-39.
74. Laiva, A.L., O′Brien, F.J., and Keogh, M.B., Innovations in gene and growth factor delivery systems for diabetic wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2018. 12(1): p. e296-e312.
75. Cheng, W., Zhang, Z., Xu, R., Cai, P., Kristensen, P., Chen, M., and Huang, Y., Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018. 106(7): p. 2588-2595.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明