博碩士論文 106324066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.229.119.29
姓名 陳博承(Bo-Cheng Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用噴霧熱裂解法制備CuInZnS薄膜及其光電化學性質
(Preparation of CuInZnS thin films by spray pyrolysis and their photoelectrochemical properties)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
★ 電化學分解水之電極材料製備與效率探討★ 金屬氧化物與硫化物異質結構薄膜之電化學研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-9-1以後開放)
摘要(中) 本實驗主要利用噴霧熱烈解法來製作一系列不同比例之CuInZnS薄膜,並測量其光電化學性質,但由於CIZS薄膜同時為四種不同元素所組成,成分過於複雜,難以尋得具有最佳光電化學性質之比例,因此實驗主要分成兩部分開發,第一步部分為:優先製作出具有最佳光電化學性質之比例的CIS薄膜,而此部分已由本實驗是已畢業博士班學長楊凱輿學長完成,第二部分則為固定先前所製作得出之前驅物中,銅、銦、硫的比例,並在前驅物中加入不同比例的鋅,來探討在不同[Zn]/[In]比例下,其光電化學性質改變之情形。
實驗結果顯示,隨著鋅在前驅物中的比例增加,CIZS於XRD圖譜分析中皆可觀察到其主要的訊號皆有朝向高角度偏移的情形,因此證明有CuInS2-ZnS solid solution產生,且其能隙值也從1.45 eV改變至2.1 eV。而在光電化學性質中,在電壓為-0.752 V v.s. R.H.E.,電解液為0.5 M K2SO4(Ph=6.8)時,[Zn]/[In]=2.4 之CIZS薄膜其光電流能最高達到2.51mA/cm2 ,且從Mott–Schottky的測試結果可以發現,其導電性質並沒有因為鋅的加入而改變,均呈現p-type的導電性質。而[Zn]/[In]=2.4 之CIZS薄膜在外加偏壓-0.152 V v.s. R.H.E.的條件下,進行一小時的穩定性測試後,仍然具有90%的光電流表現,我們也利用測量CIZS薄膜在不同[Zn]/[In]比例下的光電轉換效率(IPCE),以探討在改變紫外光可見光吸收波段後,CIZS薄膜在各個波長的光源下之光電轉換的情形。另外我們也同樣使用噴霧熱烈解法在CIZS薄膜的表面噴塗上一層n-type 的In2S3來進行表面改質,期望能夠藉此製作出具有CIZS/ In2S3 p-n juction的薄膜,以及透過在CIZS薄膜表面蒸鍍Pt來做為共觸媒的使用,進而達到提升其光電化學性質的效果,相較於未裝載Pt的CIZS薄膜,CIZS/Pt 薄膜的over potential明顯降低的許多,但CIZS/ In2S3 的薄膜測試結果則並未達到我們預期的效果,因此在後續電化學實驗中,我們也嘗試利用不同的方法來討論造成其結果的原因。
摘要(英) In this experiment, a series of different ratios of CuInZnS films were prepared by spray pyrolysis method, and their photoelectrochemical properties were measured. However, since CIZS films are composed of four different elements at the same time, the composition is too complicated and it is difficult to find the best photoelectrochemical properties, so experiments developed mainly divided into two parts, the first part : Preference is given to producing CIS films with the best photoelectrochemical properties, and this part has been completed by the graduated Ph.D., Yang Kaixuan. seniors . The second part is to fix the ratio of copper, indium and sulfur in the previous precursors, and to investigate the changes in photoelectrochemical properties at different [Zn]/[In] ratios.
The experimental results shows that with the increase of the proportion of zinc in the precursor, CIZS can be observed that the main signals are shifted to a high angle in the XRD pattern analysis, so it is proved that CuInS2-ZnS solid solution is produced, and its energy gap value also changed from 1.45 eV to 2.1 eV. In photoelectrochemical properties, the CIZS film with [Zn]/[In]=2.4 has a photocurrent density of up to 2.51 mA/cm2 at a voltage of -0.752 V vs RHE and an electrolyte of 0.5 M K2SO4 (Ph=6.8).From results of Mott-Schottky, it can be found that the conductive properties are not changed by the addition of zinc, and all exhibit p-type conductive properties. The CIZS film with [Zn]/[In]=2.4 has a 90% photocurrent performance after one hour of stability test under the applied bias voltage of -0.152 V vs RHE. The photoelectric conversion efficiency (IPCE) at different [Zn]/[In] ratios was used to investigate the photoelectricconversion of CIZS films under various wavelengths of light sources after changing the UV-vis absorption.
In addition, we also sprayed n-type In2S3 on the surface of the CIZS film by spray pyrolysis to do the surface modification. It is expected to produce a film with CIZS/In2S3 p-n juction and use Pt as a co-catalyst to improve the photoelectrochemical properties. Compared with the CIZS film without Pt, the over potential of the CIZS/Pt film is significantly reduced, However, the CIZS/In2S3 film test results did not achieve our expected , so in the subsequent electrochemical experiments, we also tried different methods to discuss the reasons.
關鍵字(中) ★ 薄膜
★ 光觸媒
★ 產氫
關鍵字(英) ★ Thin films
★ Photocatalyst
★ Hydrogen production
論文目次 目錄
摘要 ......................................................................................................... i
Abstract .................................................................................................. iii
誌謝 ......................................................................................................... v
目錄 ........................................................................................................ vi
圖目錄 ..................................................................................................... x
表目錄 ................................................................................................... xv
第一章 緒論 ............................................................................................ 1
1-1 前言 ............................................................................................... 1
1-2 太陽能 ........................................................................................... 3
1-3照光產氫原理 ................................................................................ 4
1-4研究動機 ........................................................................................ 7
第二章 文獻回顧 .................................................................................... 8
2-1 光觸媒半導體 ................................................................................ 8
2-1-1 半導體 ..................................................................................... 8
2-1-2 半導體的能帶結構 .................................................................. 9
2-1-3 半導體電極與電解液界面的平衡 ......................................... 12 2-2 異質結構半導體光觸媒 .............................................................. 14
2-2-1 Type-I Heterostructures .......................................................... 15
2-2-2 Type-II Heterostructures......................................................... 16
2-2-3 P-n heterojunctions ................................................................. 17
2-2-4 Z-scheme system .................................................................... 19
2-3 I-III-VI2族半導體觸媒 ................................................................ 20
2-3-1 I-III-VI2族半導體結構 .......................................................... 20
2-3-2 CuInS2半導體 ........................................................................ 22 2-3-3 p-type CuInS2 / n-type In2S3 p-n junction ................................ 22 2-4 I-III-II-VI 族半導體觸媒 ............................................................. 25 2-4-1 I-III-II-VI 半導體近年發展 ................................................... 25 2-4-2 Cu-In-Zn-S 半導體能帶結構 ................................................. 25
第三章 研究方法 .................................................................................. 28
3-1 實驗藥品 ...................................................................................... 28
3-2 實驗儀器 ...................................................................................... 30
3-3 實驗流程 ...................................................................................... 30
3-3-1 基材清洗................................................................................ 30
3-3-2 CIS(CuInS2)薄膜製作 ............................................................ 32
3-3-3 CIZS(CuInZnS)與In2S3 p-n junction薄膜與Pt共觸 ............ 33
3-4 薄膜性質量測 .............................................................................. 34
3-4-1 紫外光與可見光譜儀(Ultraviolet–visible spectrometer,UV-vis) [46] ........................................................................................... 34
3-4-2 X光繞射儀 ............................................................................ 36
3-5 光電化學測量 .............................................................................. 38
3-5-1 CIZS 薄膜光電極製作 .......................................................... 38
3-5-2 光電流量測 ............................................................................ 38
3-5-3 IPCE量測 .............................................................................. 40
第四章 結果與討論............................................................................... 42
4-1 CuInZnS 薄膜 .............................................................................. 42
4-1-1 基本性質分析 ........................................................................ 45
4-1-2 CIZS 薄膜表面型態分析 ....................................................... 51
4-1-3 CIZS 薄膜電化學分析 .......................................................... 60
4-1-4 光電流測量 ............................................................................ 60
4-1-5 光電轉換效率之探討 ............................................................ 65
4-1-6 穩定性測試 ............................................................................ 68
4-2 CIZS薄膜在裝載Pt共觸媒後之光電化學性質分析 ................. 70
4-2-1 光電流測試 ............................................................................ 70
4-2-2 光電轉換效率之探討 ............................................................ 72
4-2-3 穩定性測試 ............................................................................ 73
4-3 CIZS/In2S3 p-n junction 薄膜 ....................................................... 74
4-3-1基本性質分析 ........................................................................ 74
4-3-2 CIZS/In2S3 p-n junction 薄膜光電化學分析 .......................... 77
第五章 結論 .......................................................................................... 80
參考資料 ............................................................................................... 81
附錄 ....................................................................................................... 91
參考文獻 [1] 林讓均. 中國已經做到極致,還要怎麼減碳?. Available: https://www.gvm.com.tw/Boardcontent_15702.html
[2] 美國能源信息署. Available: https://www.eia.gov/todayinenergy/detail.php?id=32912
[3] 行政院保護署. 節能減碳政策. Available: http://www.epa.gov.tw/ct.asp?xItem=9958&ctNode=31350&mp=epa
[4] 維基百科. 太陽能. Available: https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD
[5] 太陽能如何轉化 (二),太陽能轉換成氫能. Available: http://pv.energytrend.com.tw/knowledge/20131029-7087.html
[6] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, p. 37, 1972.
[7] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical reviews, vol. 95, pp. 69-96, 1995.
[8] H. Zhou, Y. Qu, T. Zeid, and X. Duan, "Towards highly efficient photocatalysts using semiconductor nanoarchitectures," Energy & Environmental Science, vol. 5, pp. 6732-6743, 2012.
[9] S. Hu, C. Xiang, S. Haussener, A. D. Berger, and N. S. Lewis, "An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems," Energy & Environmental Science, vol. 6, pp. 2984-2993, 2013.
[10] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He, "Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review," Nanoscale, vol. 5, pp. 8326-8339, 2013.
[11] K. Rajeshwar, "Fundamentals of semiconductor electrochemistry and photoelectrochemistry," Encyclopedia of electrochemistry, vol. 6, pp. 1-53, 2007.
[12] 黃峻彥. Semiconductor. Available: http://eportfolio.lib.ksu.edu.tw/~4960H032/wiki/index.php/Semiconductor
[13] 崔晓莉, "半导体电极的平带电位," 化学通报, pp. 1160-1171, 1175, 2017.
[14] H. Li, Y. Zhou, W. Tu, J. Ye, and Z. Zou, "State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance," Advanced Functional Materials, vol. 25, pp. 998-1013, 2015.
[15] T. Teranishi and M. Sakamoto, "Charge separation in type-II semiconductor heterodimers," The Journal of Physical Chemistry Letters, vol. 4, pp. 2867-2873, 2013.
[16] J. Su, X.-X. Zou, G.-D. Li, X. Wei, C. Yan, Y.-N. Wang, et al., "Macroporous V2O5− BiVO4 composites: effect of heterojunction on thebehavior of photogenerated charges," The Journal of Physical Chemistry C, vol. 115, pp. 8064-8071, 2011.
[17] Z. Zhang, Y. Yu, and P. Wang, "Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants," ACS applied materials & interfaces, vol. 4, pp. 990-996, 2012.
[18] J. S. Jang, S. H. Choi, H. G. Kim, and J. S. Lee, "Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light," The Journal of Physical Chemistry C, vol. 112, pp. 17200-17205, 2008.
[19] H. Meng, C. Cui, H. Shen, D. Liang, Y. Xue, P. Li, et al., "Synthesis and photocatalytic activity of TiO2@ CdS and CdS@ TiO2 double-shelled hollow spheres," Journal of alloys and compounds, vol. 527, pp. 30-35, 2012.
[20] K. Otsuka, O. Machida, and H. Murofushi, "Surface-stabilized semiconductor device," ed: Google Patents, 2010.
[21] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," International journal of hydrogen energy, vol. 27, pp. 991-1022, 2002.
[22] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, and D. Bräunig, "Efficient CuInS2 solar cells from a rapid thermal process (RTP)," Solar Energy Materials and Solar Cells, vol. 67, pp. 159-166, 2001.
[23] I. Aksenov and K. Sato, "Effect of Fermi level motion on ESR and optical properties of CuAlS2," Japanese journal of applied physics, vol. 31, p. 2352, 1992.
[24] R. Scheer, K. Diesner, and H.-J. Lewerenz, "Experiments on the microstructure of evaporated CuInS2 thin films," Thin solid films, vol. 268, pp. 130-136, 1995.
[25] J. L. Shay and J. H. Wernick, Ternary chalcopyrite semiconductors: growth, electronic properties, and applications: international series of monographs in the science of the solid state vol. 7: Elsevier, 2017.
[26] T. Hashimoto and S. Merdes, "N. takayama, H. Nakayama, H. Nakanishi, SF Chichibou, S. Ando," in 20th European Photovoltaic Solar Energy Conference, Proceedings of the International Conference, Barcelona, 2005, p. 1926.
[27] A. F. Hepp, K. K. Banger, M. H.-C. JIN, J. D. Harris, J. S. McNatt, and J. E. Dickman, "Spray CVD of single-source precursors for chalcopyrite I–III–VI2 thin-film materials," Solution Processing of Inorganic Materials, pp. 157-198, 2008.
[28] M. Zribi, M. Kanzari, and B. Rezig, "Effects of Na incorporation in CuInS2 thin films," The European Physical Journal Applied Physics, vol. 29, pp. 203-207, 2005.
[29] Y. Ogawa, A. Jäger-Waldau, Y. Hashimoto, and K. Ito, "In2O3/CdS/CuInS2 thin-film solar cell with 9.7% efficiency," Japanese journal of applied physics, vol. 33, p. L1775, 1994.
[30] R. Naciri, H. Bihri, A. Rahioui, A. Mzerd, C. Messaoudi, and M. Abd-Lefdil, "The role of CdS buffer layer in CuInS2 based thin film solar cells," Phys. Chem. News, vol. 46, pp. 21-25, 2009.
[31] W. Septina, T. Harada, Y. Nose, and S. Ikeda, "Investigation of the electric structures of heterointerfaces in Pt-and In2S3-modified CuInS2 photocathodes used for sunlight-induced hydrogen evolution," ACS applied materials & interfaces, vol. 7, pp. 16086-16092, 2015.
[32] W. Septina, S. Ikeda, T. Harada, T. Minegishi, K. Domen, and M. Matsumura, "Platinum and indium sulfide-modified CuInS 2 as efficient photocathodes for photoelectrochemical water splitting," Chemical Communications, vol. 50, pp. 8941-8943, 2014.
[33] M. Santhosh, D. Deepu, C. S. Kartha, K. R. Kumar, and K. Vijayakumar, "All sprayed ITO-free CuInS2/In2S3 solar cells," Solar Energy, vol. 108, pp. 508-514, 2014.
[34] I. Puspitasari, T. Gujar, K.-D. Jung, and O.-S. Joo, "Simple chemical method for nanoporous network of In2S3 platelets for buffer layer in CIS solar cells," journal of materials processing technology, vol. 201, pp. 775-779, 2008.
[35] A. Haris, H. Widiyandari, W. Septina, and S. Ikeda, "Surface modifications of chalcopyrite CuInS2 thin films for photochatodes in photoelectrochemical water splitting under sunlight irradiation," in IOP Conference Series: Materials Science and Engineering, 2017, p. 012021.
[36] T. T. John, M. Mathew, C. S. Kartha, K. Vijayakumar, T. Abe, and Y. Kashiwaba, "CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency," Solar Energy Materials and Solar Cells, vol. 89, pp. 27-36, 2005.
[37] D. Aldakov, A. Lefrançois, and P. Reiss, "Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications," Journal of Materials Chemistry C, vol. 1, pp. 3756-3776, 2013.
[38] K. Ramasamy, M. A. Malik, N. Revaprasadu, and P. O’Brien, "Routes to nanostructured inorganic materials with potential for solar energy applications," Chemistry of Materials, vol. 25, pp. 3551-3569, 2013.
[39] F.-J. Fan, L. Wu, and S.-H. Yu, "Energetic I–III–VI 2 and I 2–II–IV–VI 4 nanocrystals: synthesis, photovoltaic and thermoelectric applications," Energy & Environmental Science, vol. 7, pp. 190-208, 2014.
[40] J. Zhang, R. Xie, and W. Yang, "A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters," Chemistry of Materials, vol. 23, pp. 3357-3361, 2011.
[41] A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, and Z. Wang, "Color-Tunable Photoluminescence of Alloyed CdS x Se1-x Nanobelts," Journal of the American Chemical Society, vol. 127, pp. 15692-15693, 2005.
[42] I. Tsuji, H. Kato, and A. Kudo, "Visible‐light‐induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid‐solution photocatalyst," Angewandte Chemie International Edition, vol. 44, pp. 3565-3568, 2005.
[43] R. Hunger, C. Pettenkofer, and R. Scheer, "Surface properties of (1 1 1),(0 0 1), and (1 1 0)-oriented epitaxial CuInS2/Si films," Surface science, vol. 477, pp. 76-93, 2001.
[44] C. Fernando, T. Bandara, and S. Wethasingha, "H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation," Solar energy materials and solar cells, vol. 70, pp. 121-129, 2001.
[45] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, "Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn) x Zn2 (1-x) S2 Solid Solutions," The Journal of Physical Chemistry B, vol. 109, pp. 7323-7329, 2005.
[46] T. Taguchi, L. Ni, and H. Irie, "Alkaline-resistant titanium dioxide thin film displaying visible-light-induced superhydrophilicity initiated by interfacial electron transfer," Langmuir, vol. 29, pp. 4908-4914, 2013.
[47] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting: Springer, 2013.
[48] J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, et al., "Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting," Journal of catalysis, vol. 317, pp. 126-134, 2014.
[49] D. K. Zhong, S. Choi, and D. R. Gamelin, "Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4," Journal of the American Chemical Society, vol. 133, pp. 18370-18377, 2011.
[50] 吳季珍. (2015, 04/01/2018) 擺脫庫倫作用力的光觸媒. 科學發展 [機關雜誌]. 28.
[51] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols: Springer New York Heidelberg Dordrecht London, 2013.
[52] J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, et al., "Palladium oxide as a novel oxygen evolution catalyst on BiVO 4 photoanode for photoelectrochemical water splitting," Journal of Catalysis, vol. 317, pp. 126-134, 2014.
[53] D. K. Zhong, S. Choi, and D. R. Gamelin, "Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4," Journal of the American Chemical Society, vol. 133, pp. 18370-18377, 2011/11/16 2011.
[54] J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, et al., "BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell," ACS Applied Materials & Interfaces, vol. 9, pp. 1479-1487, 2017/01/18 2017.
[55] A. Loiudice, J. K. Cooper, L. H. Hess, T. M. Mattox, I. D. Sharp, and R. Buonsanti, "Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals," Nano Letters, vol. 15, pp. 7347-7354, 2015/11/11 2015.
[56] B.-Y. Cheng, J.-S. Yang, H.-W. Cho, and J.-J. Wu, "Fabrication of an Efficient BiVO4–TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation," ACS Applied Materials & Interfaces, vol. 8, pp. 20032-20039, 2016/08/10 2016.
[57] V. Nair, C. L. Perkins, Q. Lin, and M. Law, "Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution," Energy & Environmental Science, vol. 9, pp. 1412-1429, 2016.
[58] G. Wang, Y. Ling, H. Wang, L. Xihong, and Y. Li, "Chemically modified nanostructures for photoelectrochemical water splitting," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 19, pp. 35-51, 2014.
[59] R. Van de Krol and M. Grätzel, Photoelectrochemical hydrogen production vol. 90: Springer, 2012.
[60] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting–materials and challenges," Chemical Society Reviews, vol. 46, pp. 4645-4660, 2017.
[61] Y. Ye, Z. Zang, T. Zhou, F. Dong, S. Lu, X. Tang, et al., "Theoretical and experimental investigation of highly photocatalytic performance ofCuInZnS nanoporous structure for removing the NO gas," Journal of catalysis, vol. 357, pp. 100-107, 2018.
[62] W. Kong, B. Zhang, R. Li, F. Wu, T. Xu, and H. Wu, "Plasmon enhanced fluorescence from quaternary CuInZnS quantum dots," Applied Surface Science, vol. 327, pp. 394-399, 2015.
[63] J. Vinayagam, G.-R. Chen, T.-Y. Huang, J.-H. Ho, Y.-C. Ling, K.-L. Ou, et al., "Aqueous synthesis of CuInZnS/ZnS quantum dots by using dual stabilizers: A targeting nanoprobe for cell imaging," Materials Letters, vol. 173, pp. 242-247, 2016.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明