博碩士論文 106324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:181 、訪客IP:3.138.102.178
姓名 劉庭萱(Ting-Hsuan Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討利用Lactobacillus plantarum發酵Momordica charantia山苦瓜對其降血糖及其他生物活性之影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 山苦瓜(Momordica charantia)因具有保健及藥理學功效,近年來被廣泛地進行研究,其中有多篇文獻指出山苦瓜能有效地降低血糖,可被應用於治療第二型糖尿病。然而雖有許多專注於山苦瓜生物活性功能之研究,對於山苦瓜透過微生物發酵的文獻卻相對較少。微生物的發酵製程不僅可以改善風味、延長食品的保存期限,亦可改變原料的生物活性,進而提升其營養及經濟價值。因此本研究利用胚芽乳酸菌Lactobacillus plantarum對山苦瓜進行發酵,欲了解山苦瓜成分與生物活性之關係,並提升其降低血糖及抗氧化之能力。
好氧厭氧、培養溫度及營養源皆是影響微生物生長及表現的因素,對發酵山苦瓜的成份及生物活性產生影響,因此本研究將探討不同培養方式、溫度及以豆漿作為營養源之不同濃度下,利用Lactobacillus plantarum BCRC15478發酵山苦瓜對其成份及生物活性之影響。
苦瓜素(Charantin)為山苦瓜中的一種類固醇糖苷化合物,能對碳水化合物代謝酶進行抑制作用,故本研究觀察此成分在發酵過程中的變化,並與作為抗糖尿病指標的α-澱粉酶抑制率相比較。結果顯示經發酵,微生物分解苦瓜細胞壁,釋放出更多苦瓜素,進而對山苦瓜提取液貢獻更好的澱粉酶抑制效果。此外,亦發現山苦瓜發酵液及提取液中的抗氧化性與多酚物質相關,發酵後可有效提升抗氧化活性。經由實驗結果,L. plantarum於30°C厭氧培養下添加10 %豆漿作為營養源,有最好的菌種生長狀況,且發酵後的山苦瓜液具91.55 %的DPPH自由基清除力,山苦瓜乾粉提取液則有47.14 %的DPPH自由基清除力及64.75 %的α-澱粉酶抑制活性,相比未發酵前增加37.07 %的苦瓜素含量。
摘要(英) Various biological activities and pharmacological effects of Momordica charantia have been reported recent years. Lots of them demonstrated that bitter melon can used for lowering blood glucose levels in patients with diabetes mellitus. However, although there are many studies focusing on the biological activity of M. charantia, there is no sufficient literature to use on the microbial fermentation. Fermentation process not only improved the flavor of the raw material, but also extended the shelf life of the food and enhanced its nutritional value and economic value. Therefore, M. charantia fruit was used to fermented by Lactobacillus plantarum to enhanced its anti-diabetes and antioxidant activities. Moreover, the relationship between compounds and bioactive functions will be discuss in this study.
Charantin is a steroidal glycoside present in the Momordica charantia which can inhibit the key enzymes related to carbohydrate metabolism. Thus, the present study aimed to investigate charantin content and α-amylase inhibition ability during the fermentation. Research is also focusing on total phenolic compounds and antioxidant ability via fermentation with L. plantarum. Results showed that inhibition of α-amylase activity and DPPH scavenging activity can be improved in fermented M. charantia juice. The M. charantia juice with 10 % soymilk as a nutrient supplementation under 30°C provide good environment for the growth of cell viability. The fermented juice and the extraction of fermented M. charantia powder showed higher DPPH scavenging activity and α-amylase inhibition activity compared with the unfermented juice.
關鍵字(中) ★ 山苦瓜
★ 乳酸菌發酵
★ 降低血糖
★ 抑制澱粉酶
關鍵字(英) ★ Momordica charantia
★ Fermentation
★ α-amylase inhibition
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
一、緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1山苦瓜 3
2-1-1山苦瓜的基本介紹 3
2-1-2山苦瓜的成份 3
2-1-3山苦瓜的生物活性及功效 6
2-2 苦瓜素(Charantin) 9
2-2-1 苦瓜素的基本介紹 9
2-2-2 苦瓜素的功效 11
2-2-3 苦瓜素的萃取方法 12
2-3 糖尿病(Diabetes) 12
2-3-1 糖尿病的基本介紹 12
2-3-2 糖尿病的成因和類別 13
2-3-3 第2型糖尿病的治療方法 13
2-4 乳酸菌發酵 15
2-4-1 乳酸菌發酵的基本介紹 15
2-4-2 乳酸菌發酵進行生物轉化 15
2-5 山苦瓜發酵研究 18
三、材料與方法 21
3-1 實驗規劃 21
3-2 實驗材料 23
3-2-1 實驗菌株 23
3-2-2 實驗藥品 24
3-2-3 實驗儀器與設備 26
3-3 實驗方法 28
3-3-1菌種保存及固態培養 28
3-3-2液態種瓶培養 29
3-3-3液態發酵實驗 30
3-3-4苦瓜素萃取條件實驗 32
3-4 分析方法 34
3-4-1 平板菌落計數法 34
3-4-2 pH值分析 34
3-4-3 還原糖濃度分析 35
3-4-4 乳酸分析 37
3-4-5 總多酚類化合物含量測定(Total phenolic compounds) 39
3-4-6 蛋白質濃度測定(BCA protein assay) 40
3-4-7 DPPH自由基清除能力測定(DPPH scavenging activity) 42
3-4-8 α-澱粉酶抑制能力測定(α-amylase inhibition ability) 42
3-4-9 苦瓜素濃度分析 44
四、結果與討論 46
4-1 Charantin苦瓜素萃取條件最適化 46
4-2 Lactobacillus plantarum的生長曲線 49
4-3 不同發酵方式對山苦瓜之影響 50
4-3-1 發酵方式對Lactobacillus plantarum生長的影響 50
4-3-2 發酵方式對Momordica charantia發酵液生物活性的影響 53
4-3-3 發酵方式對Momordica charantia萃取液生物活性的影響 55
4-3-4發酵方式對發酵山苦瓜之結論 56
4-4 發酵溫度對山苦瓜之影響 57
4-4-1發酵溫度對pH值和殘糖濃度的影響 57
4-4-2發酵溫度對發酵液抗氧化活性及總多酚含量的影響 59
4-4-3發酵溫度對萃取液抗氧化活性及總多酚含量的影響 62
4-4-4發酵溫度對發酵液澱粉酶抑制活性及蛋白質含量的影響 64
4-4-5發酵溫度對萃取液澱粉酶抑制活性及苦瓜素含量的影響 66
4-4-6發酵溫度對山苦瓜發酵液及萃取液生物活性影響之結論 68
4-5 添加稀釋豆漿對發酵山苦瓜之影響 72
4-5-1稀釋豆漿濃度對發酵山苦瓜的影響 72
4-5-2 添加稀釋豆漿對Lactobacillus plantarum生長狀態的影響 74
4-5-3 添加稀釋豆漿對pH值、殘糖濃度和乳酸含量的影響 75
4-5-4添加稀釋豆漿對發酵液抗氧化活性的影響 77
4-5-5添加稀釋豆漿對萃取液抗氧化活性的影響 79
4-5-6添加稀釋豆漿對發酵液抑制澱粉酶活性的影響 80
4-5-7添加稀釋豆漿對萃取液抑制澱粉酶活性的影響 81
4-5-8添加稀釋豆漿對萃取液中苦瓜素含量的影響 82
4-5-9添加稀釋豆漿對山苦瓜發酵液及萃取液生物活性比較 83
五、結論 85
參考文獻 87
參考文獻 [1] S. Jia, M. Shen, F. Zhang, and J. Xie, ”Recent advances in Momordica charantia: functional components and biological activities,” International journal of molecular sciences, vol. 18, no. 12, p. 2555, 2017.
[2] J. Grover and S. Yadav, ”Pharmacological actions and potential uses of Momordica charantia: a review,” Journal of ethnopharmacology, vol. 93, no. 1, pp. 123-132, 2004.
[3] T. Akihisa et al., ”Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects,” Journal of natural products, vol. 70, no. 8, pp. 1233-1239, 2007.
[4] J. Yue, J. Xu, J. Cao, X. Zhang, and Y. Zhao, ”Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B),” Journal of Functional Foods, vol. 37, pp. 624-631, 2017.
[5] P. Khanna, S. Jain, A. Panagariya, and V. Dixit, ”Hypoglycemic activity of polypeptide-p from a plant source,” Journal of Natural Products, vol. 44, no. 6, pp. 648-655, 1981.
[6] A. P. Guevara, C. Y. Lim-Sylianco, F. M. Dayrit, and P. Finch, ”Acylglucosyl sterols from Momordica charantia,” Phytochemistry, vol. 28, no. 6, pp. 1721-1724, 1989.
[7] S. Begum, M. Ahmed, B. S. Siddiqui, A. Khan, Z. S. Saify, and M. Arif, ”Triterpenes, a sterol and a monocyclic alcohol from Momordica charantia,” Phytochemistry, vol. 44, no. 7, pp. 1313-1320, 1997.
[8] S.-J. Wu and L.-T. Ng, ”Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan,” LWT-Food Science and Technology, vol. 41, no. 2, pp. 323-330, 2008.
[9] M. S. Akhtar, M. A. Athar, and M. Yaqub, ”Effect of Momordica charantia on blood glucose level of normal and alloxan-diabetic rabbits,” Planta Medica, vol. 42, no. 07, pp. 205-212, 1981.
[10] E. Karunanayake, J. Welihinda, S. Sirimanne, and G. S. Adorai, ”Oral hypoglycaemic activity of some medicinal plants of Sri Lanka,” Journal of ethnopharmacology, vol. 11, no. 2, pp. 223-231, 1984.
[11] B. S. Yadav, R. Yadav, R. B. Yadav, and M. Garg, ”Antioxidant activity of various extracts of selected gourd vegetables,” Journal of food science and technology, vol. 53, no. 4, pp. 1823-1833, 2016.
[12] A. Padmashree, G. K. Sharma, A. D. Semwal, and A. S. Bawa, ”Studies on the antioxygenic activity of bitter gourd (Momordica charantia) and its fractions using various in vitro models,” Journal of the Science of Food and Agriculture, vol. 91, no. 4, pp. 776-782, 2011.
[13] K. Mwambete, ”The in vitro antimicrobial activity of fruit and leaf crude extracts of Momordica charantia: a Tanzania medicinal plant,” African health sciences, vol. 9, no. 1, pp. 34-39, 2009.
[14] G. Leelaprakash, J. C. Rose, B. Gowtham, P. K. Javvaji, and S. Prasad, ”In vitro antimicrobial and antioxidant activity of Momordica charantia leaves,” Pharmacophore, vol. 2, no. 4, pp. 244-252, 2011.
[15] S. Mada, A. Garba, H. Mohammed, A. Muhammad, A. Olagunju, and A. Muhammad, ”Antimicrobial activity and phytochemical screening of aqueous and ethanol extracts of Momordica charantia L. leaves,” Journal of Medicinal Plants Research, vol. 7, no. 10, pp. 579-586, 2013.
[16] Q. Chen, L. L. Chan, and E. T. Li, ”Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet,” The Journal of nutrition, vol. 133, no. 4, pp. 1088-1093, 2003.
[17] Q. Chen and E. T. Li, ”Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines,” British Journal of Nutrition, vol. 93, no. 5, pp. 747-754, 2005.
[18] E. F Fang and T. B Ng, ”Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties,” Current Molecular Medicine, vol. 11, no. 5, pp. 417-436, 2011.
[19] S. Desai and P. Tatke, ”Charantin: An important lead compound from Momordica charantia for the treatment of diabetes,” Journal of Pharmacognosy and Phytochemistry, vol. 3, no. 6, pp. 163-166, 2015.
[20] M. Lolitkar and M. R. Rao, ”Note on a hypoglycaemic principle isolated from the fruits of Momordica charantia,” Journal of the University of Bombay, vol. 29, pp. 223-224, 1962.
[21] D. M. Cuong et al., ”Accumulation of charantin and expression of triterpenoid biosynthesis genes in bitter melon (Momordica charantia),” Journal of agricultural and food chemistry, vol. 65, no. 33, pp. 7240-7249, 2017.
[22] J. Ahamad, S. R. Mir, and S. Amin, ”Antihyperglycamia activity of charantin isolated from fruits of Momordica Charantia Linn,” International Research Journal Of Pharmacy, vol. 10, pp. 61-64, 01/31 2019.
[23] S. Pugazhenthi and P. S. Murthy, ”Partial purification of a hypoglycemic fraction from the unripe fruits ofMomordica charantia Linn (bitter gourd),” Indian Journal of Clinical Biochemistry, vol. 10, no. 1, p. 19, 1995.
[24] A. Fuangchan et al., ”Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients,” Journal of ethnopharmacology, vol. 134, no. 2, pp. 422-428, 2011.
[25] J. Pitipanapong, S. Chitprasert, M. Goto, W. Jiratchariyakul, M. Sasaki, and A. Shotipruk, ”New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction,” Separation and Purification Technology, vol. 52, no. 3, pp. 416-422, 2007.
[26] S. M. El-Said and A. S. Al-Barak, ”Extraction of insulin like compounds from bitter melon plants,” American Journal of Drug Discovery and Development, vol. 1, pp. 1-7, 2011.
[27] R. A. Moreau, B. D. Whitaker, and K. B. Hicks, ”Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses,” Progress in lipid research, vol. 41, no. 6, pp. 457-500, 2002.
[28] M. o. H. a. W. Health Promotion Administration, 2018.
[29] W. H. Organization, ”Diabetes,” 2018.
[30] M. A. Atkinson, G. S. Eisenbarth, and A. W. Michels, ”Type 1 diabetes,” The Lancet, vol. 383, no. 9911, pp. 69-82, 2014.
[31] B. B. Lowell and G. I. Shulman, ”Mitochondrial dysfunction and type 2 diabetes,” Science, vol. 307, no. 5708, pp. 384-387, 2005.
[32] C. Kim, K. M. Newton, and R. H. Knopp, ”Gestational diabetes and the incidence of type 2 diabetes: a systematic review,” Diabetes care, vol. 25, no. 10, pp. 1862-1868, 2002.
[33] J. K. DiStefano and R. M. Watanabe, ”Pharmacogenetics of anti-diabetes drugs,” Pharmaceuticals, vol. 3, no. 8, pp. 2610-2646, 2010.
[34] J.-L. Chiasson et al., ”Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial,” The Lancet, vol. 359, no. 9323, pp. 2072-2077, 2002.
[35] S. P. Clissold and C. Edwards, ”Acarbose,” Drugs, vol. 35, no. 3, pp. 214-243, 1988.
[36] P. Hollander, ”Safety profile of acarbose, an α-glucosidase inhibitor,” Drugs, vol. 44, no. 3, pp. 47-53, 1992.
[37] R. S. Hundal and S. E. Inzucchi, ”Metformin,” Drugs, vol. 63, no. 18, pp. 1879-1894, 2003.
[38] C. J. Bailey and R. C. Turner, ”Metformin,” New England Journal of Medicine, vol. 334, no. 9, pp. 574-579, 1996.
[39] N. Sturgess, D. Cook, M. J. Ashford, and C. N. Hales, ”The sulphonylurea receptor may be an ATP-sensitive potassium channel,” The Lancet, vol. 326, no. 8453, pp. 474-475, 1985.
[40] E. C. Chao and R. R. Henry, ”SGLT2 inhibition—a novel strategy for diabetes treatment,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 551-559, 2010.
[41] N.-K. Lee and H.-D. Paik, ”Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds,” J Microbiol Biotechnol, vol. 27, pp. 869-877, 2017.
[42] R. Di Cagno et al., ”Synthesis of γ-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications,” Applied microbiology and biotechnology, vol. 86, no. 2, pp. 731-741, 2010.
[43] J. E. Kim, J. S. Kim, Y. C. Song, J. Lee, and S. P. Lee, ”Novel bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154,” Food Science and Biotechnology, vol. 23, no. 5, pp. 1551-1559, 2014.
[44] K. D. Setchell et al., ”Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability,” The American journal of clinical nutrition, vol. 76, no. 2, pp. 447-453, 2002.
[45] C. Rekha and G. Vijayalakshmi, ”Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast,” Journal of applied microbiology, vol. 109, no. 4, pp. 1198-1208, 2010.
[46] W. Suthanthangjai, P. Kilmartin, A. Phillips, K. Davies, and J. Ansell, ”Bioconversion of Pinot noir anthocyanins into bioactive phenolic compounds by lactic acid bacteria,” Nutrition and Aging, vol. 2, no. 2, 3, pp. 145-149, 2014.
[47] M. A. Huq, Y.-J. Kim, J.-W. Min, K. S. Bae, and D.-C. Yang, ”Use of Lactobacillus rossiae DC05 for bioconversion of the major ginsenosides Rb1 and Re into the pharmacologically active ginsenosides CK and Rg2,” Food Science and Biotechnology, vol. 23, no. 5, pp. 1561-1567, 2014.
[48] V. Sharma and H. Mishra, ”Fermentation of vegetable juice mixture by probiotic lactic acid bacteria,” Nutrafoods, vol. 12, no. 1, pp. 17-22, 2013.
[49] H. Gao et al., ”Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile,” Food Bioscience, vol. 29, pp. 62-72, 2019.
[50] F. A. Mazlan, M. S. M. Annuar, and Y. Sharifuddin, ”Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential,” PeerJ, vol. 3, p. e1376, 2015.
[51] G. L. Miller, ”Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical chemistry, vol. 31, no. 3, pp. 426-428, 1959.
[52] V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, ”[14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” in Methods in enzymology, vol. 299: Elsevier, 1999, pp. 152-178.
[53] 陳良宇 et al., ”鹼催化對 Folin-Ciocalteu 試劑檢測總多酚含量的影響,” MC-Transaction on Biotechnology, vol. 4, no. 1, pp. 10-19, 2012.
[54] C. M. Stoscheck, ”Quantitation of protein,” in Methods in enzymology, vol. 182: Elsevier, 1990, pp. 50-68.
[55] L. Chen et al., ”A turn-on resonance Raman scattering (BCS/Cu+) sensor for quantitative determination of proteins,” Applied spectroscopy, vol. 70, no. 2, pp. 355-362, 2016.
[56] P. Molyneux, ”The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity,” Songklanakarin J. sci. technol, vol. 26, no. 2, pp. 211-219, 2004.
[57] S. J. Hossain, I. Tsujiyama, M. Takasugi, M. A. Islam, R. S. Biswas, and H. Aoshima, ”Total phenolic content, antioxidative, anti-amylase, anti-glucosidase, and antihistamine release activities of Bangladeshi fruits,” Food Science and Technology Research, vol. 14, no. 3, pp. 261-268, 2008.
[58] E. Apostolidis, Y.-I. Kwon, R. Ghaedian, and K. Shetty, ”Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension,” Food biotechnology, vol. 21, no. 3, pp. 217-236, 2007.
[59] P. P. McCue and K. Shetty, ”Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures,” Process Biochemistry, vol. 40, no. 5, pp. 1791-1797, 2005.
指導教授 徐敬衡 審核日期 2020-5-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明