博碩士論文 106324604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.207.240.230
姓名 郭木鐸(Mu-Duo Guo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用兩階段厭氧發酵處理農業廢棄物產生沼氣及其最適化操作
(Optimization of two-stage anaerobic digestion process for biogas to treat agricultural waste)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-1-14以後開放)
摘要(中) 能源問題是人類在本世紀面臨的重要議題之一。人們亟需尋求綠色可再生能源來滿足巨額的能源消耗,並且擺脫對於化石燃料的依賴。厭氧發酵技術可以利用微生物將農業廢棄物轉化為沼氣,這使得其不單具有經濟價值,更有環保方面的效用,將農業廢棄物轉化為甲烷既能得到清潔環保的可燃氣體,又可以解決原有的廢棄物處理問題,因此目前世界各國都在積極發展厭氧發酵技術。
目前台灣的厭氧發酵工廠大多使用單階段厭氧發酵反應,即在一個反應器內同時進行全部的厭氧發酵反應。但厭氧發酵反應實際上具有多個步驟,並且由不同的微生物群完成。如果可以從微生物群的角度將用於產酸水解的微生物與用於產甲烷的微生物分離,則將有機會找到它們各自適合的發酵參數,使得每個步驟都有最適化的可能。除此之外還可以避免因過度產酸而抑制產甲烷菌活性的情況。因此本研究,將水解產酸菌與產甲烷菌做分離構成獨立的水解產酸階段和產甲烷階段,再使用兩階段厭氧發酵最終生成甲烷。對每個階段進行的最適化討論,以達到提升產率的目的。
本研究使用熱處理的方式對厭氧微生物做處理,得到可用於水解產酸,但不會產生甲烷的厭氧污泥。之後使用該污泥做兩階段厭氧發酵與單階段厭氧發酵做對比,甲烷產量提升21%。最後探討碳氮比,一階段溫度,二階段溫度對厭氧發酵之影響。當一階段溫度為35℃,二階段溫度為50℃,碳氮比為10時甲烷產量最大,達到每克揮發性固體84毫升甲烷氣體。
摘要(英) Abstract
The energy issue is one of the important topics in this century. With the growing demand for energy, there is an urgent need to develop clean, renewable energy to get rid of dependence on fossil fuels. Anaerobic fermentation technology converts agricultural waste into biomethane, and at the same time generates clean and environmentally friendly biogas and solves the problem of waste disposal. Therefore, countries around the world actively developing anaerobic fermentation technology.
Most of the anaerobic fermentation plants in Taiwan use a single-stage anaerobic fermentation reaction, that is, the entire anaerobic fermentation process is performed simultaneously in one reactor. But the anaerobic fermentation actually has multiple steps and is completed by the different microorganism. If the microorganisms used for acidogenic hydrolysis are separated from the microorganisms used for methanogenesis, there will be an opportunity to find their respective optimized operating parameters. If volatile fatty acid-producing microorganisms are separated from methanogens, the respective optimized operating parameters will be found. This study uses a two-stage operation for anaerobic fermentation and optimizes it for higher yields. When the first stage temperature is 35 degrees, the second stage temperature is 50 degrees, and the carbon-nitrogen ratio is 10, the methane production is the best, reaching 84 (ml) of methane gas per gram of volatile solids.
關鍵字(中) ★ 厭氧發酵
★ 甲烷
★ 農業廢棄物
關鍵字(英)
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
圖目錄 viii
表目錄 x
第一章緒論 1
1-1研究動機 1
1-2研究目的 3
第二章 文獻回顧 5
2-1生質能源 5
2-2生質氣體與生質甲烷 7
2-3厭氧發酵產甲烷 9
2-4 厭氧發酵環境因子 13
2-4.1 溫度 13
2-4.2 pH值 14
2-4.3 碳氮比(C/N ratio) 15
2-4.4揮發性脂肪酸 16
2-4.5氨氮類物質 17
2-5 菇包木屑(spent mushroom substrate,SMS) 18
2-6菇包木屑之組成 18
2-7預處理 21
2-8雞糞 23
2-9兩階段厭氧發酵 24
2-10污泥處理 25
第三章 材料與方法 26
3-1 實驗設計與流程 26
3-2 實驗材料 28
3-3 實驗藥品 30
3-4 實驗儀器與設備 31
3-5 實驗方法 33
3-5.1 菇包木屑的酸水解預處理 33
3-5.2 污泥處理與分離效果之驗證 33
3-5.3以單階段厭氧發酵驗證分離效果 34
3-5.4 兩階段發酵與單階段發酵之對比實驗 34
3-5.5 兩階段操作之最適化操作 36
3-6 分析方法 38
第四章 實驗結果與討論 46
4-1 熱處理法與曝氣法對於污泥之處理效果 46
4-1.1使用兩種污泥做厭氧發酵之biogas產量 46
4-1.2使用兩種污泥做厭氧發酵之pH值變化 47
4-1.3使用兩種污泥做厭氧發酵之甲烷濃度 49
4-2以水解產酸污泥做兩階段厭氧發酵對照實驗 50
4-2.1產甲烷階段之每日biogas產量 50
4-2.2 產甲烷階段之pH變化 51
4-2.3 產甲烷階段揮發性脂肪酸含量變化 52
4-2.4 產甲烷階段之甲烷濃度 54
4-2.5 產甲烷階段之每日甲烷產量 55
4-2.6 甲烷累積量 56
4-3 兩階段發酵最適化條件探討 57
4-3.1一階段溫度變化對biogas產量的影響 57
4-3.2一階段溫度變化對pH的影響 59
4-3.3 一階段溫度變化對揮發性脂肪酸累積量的影響 60
4-3.4一階段溫度變化對二階段甲烷濃度的影響 61
4-3.5一階段溫度變化對二階段甲烷產量的影響 61
4-3.6二階段溫度變化對產甲烷階段biogas產量的影響 64
4-3.7二階段溫度變化對產甲烷階段pH的影響 66
4-3.8二階段溫度變化對甲烷濃度的影響 67
4-3.9二階段溫度變化對產甲烷產量的影響 68
4-3.10碳氮比對產甲烷階段biogas的影響 69
4-3.11碳氮比變化對產甲烷階段pH值的影響 71
4-3.12碳氮比變化對產甲烷濃度的影響 72
4-3.13碳氮比變化對甲烷產量的影響 73
第五章 結論與建議 75
5-1結論 75
5-2建議 76
參考文獻 77
參考文獻 參考文獻

[1] I. E. Agency. https://www.iea.org/data-and-statistics (accessed.
[2] 劉育姍, 康瑋帆, 呂昀陞, and 石信德, ”我國菇類產業現況與技術發展策略分析,” 農政與農情, 285:, pp. 72-82, 2016.
[3] L. Safley Jr, P. Westerman, and J. Barker, ”Fresh dairy manure characteristics and barnlot nutrient losses,” Agricultural Wastes, vol. 17, no. 3, pp. 203-215, 1986.
[4] L. Brennan and P. Owende, ”Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557-577, 2010.
[5] P. Adams, Greenhouse Gas Balances of Bioenergy Systems. 2018.
[6] S. Rasi, A. Veijanen, and J. Rintala, ”Trace compounds of biogas from different biogas production plants,” Energy, vol. 32, no. 8, pp. 1375-1380, 2007.
[7] P. Weiland, ”Biogas production: current state and perspectives,” Applied microbiology and biotechnology, vol. 85, no. 4, pp. 849-860, 2010.
[8] T. Amon, E. Hackl, D. Jeremic, B. Amon, and J. Boxberger, ”Biogas production from animal wastes, energy plants and organic wastes,” 9th World Congress on Anaerobic Digestion, pp. 381–386, 2001.
[9] C. Mao, Y. Feng, X. Wang, and G. Ren, ”Review on research achievements of biogas from anaerobic digestion,” Renewable and sustainable energy reviews, vol. 45, pp. 540-555, 2015.
[10] W. Gujer and A. Zehnder ”Conversion processes in anaerobic digestion,” Water Sci Technol, no. 15, pp. 127-167, 1983.
[11] L. Appels, J. Baeyens, J. Degreve, and R. Dewil, ”Principles and potential of the anaerobic digestion of waste-activated sludge,” Progress in energy and combustion science, vol. 34, no. 6, pp. 755-781, 2008.
[12] S. Dahiya, S. Lakshminarayanan, and S. V. Mohan, ”Steering acidogenesis towards selective propionic acid production using co-factors and evaluating environmental sustainability,” Chemical Engineering Journal, vol. 379, p. 122135, 2020.
[13] Y. Li et al., ”Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources,” Science of The Total Environment, vol. 699, p. 134226, 2020.
[14] Z. Bagi et al., ”Biotechnological intensification of biogas production,” Applied Microbiology and Biotechnology, vol. 76, no. 2, pp. 473-482, 2007.
[15] Q. Wang, M. Kuninobu, H. I. Ogawa, and Y. Kato, ”Degradation of volatile fatty acids in highly efficient anaerobic digestion,” Biomass and Bioenergy, vol. 16, no. 6, pp. 407-416, 1999.
[16] M. De La Rubia, F. Raposo, B. Rincón, and R. Borja, ”Evaluation of the hydrolytic–acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake,” Bioresource Technology, vol. 100, no. 18, pp. 4133-4138, 2009.
[17] C. Nathoa, U. Sirisukpoca, and N. Pisutpaisal, ”Production of hydrogen and methane from banana peel by two phase anaerobic fermentation,” Energy Procedia, vol. 50, pp. 702-710, 2014.
[18] E. Kwietniewska and J. Tys, ”Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 491-500, 2014.
[19] M. Westerholm, S. Roos, and A. Schnürer, ”Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter,” FEMS microbiology letters, vol. 309, no. 1, pp. 100-104, 2010.
[20] E. J. Bowen, J. Dolfing, R. J. Davenport, F. L. Read, and T. P. Curtis, ”Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater,” Water Science and Technology, vol. 69, no. 5, pp. 1004-1013, 2013.
[21] J. A. Ogejo, Z. Wen, J. Ignosh, E. S. Bendfeldt, and E. Collins, ”Biomethane technology,” 2009.
[22] A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, ”Optimisation of the anaerobic digestion of agricultural resources,” Bioresource technology, vol. 99, no. 17, pp. 7928-7940, 2008.
[23] X. Dai, X. Li, D. Zhang, Y. Chen, and L. Dai, ”Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio,” Bioresource technology, vol. 216, pp. 323-330, 2016.
[24] T. Zhang et al., ”Biogas production by co-digestion of goat manure with three crop residues,” PloS one, vol. 8, no. 6, p. e66845, 2013.
[25] A. Punal, M. Trevisan, A. Rozzi, and J. Lema, ”Influence of C: N ratio on the start-up of up-flow anaerobic filter reactors,” Water research, vol. 34, no. 9, pp. 2614-2619, 2000.
[26] H.-W. Yen and D. E. Brune, ”Anaerobic co-digestion of algal sludge and waste paper to produce methane,” Bioresource technology, vol. 98, no. 1, pp. 130-134, 2007.
[27] A. Khalid, M. Arshad, M. Anjum, T. Mahmood, and L. Dawson, ”The anaerobic digestion of solid organic waste,” Waste management, vol. 31, no. 8, pp. 1737-1744, 2011.
[28] D. Deublein and A. Steinhauser, Biogas from waste and renewable resources: an introduction. John Wiley & Sons, 2011.
[29] D. J. Batstone et al., ”The IWA anaerobic digestion model no 1 (ADM1),” Water Science and technology, vol. 45, no. 10, pp. 65-73, 2002.
[30] P. Kaparaju and J. Rintala, ”Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure,” Resources, Conservation and Recycling, vol. 43, no. 2, pp. 175-188, 2005.
[31] J. Gelegenis, D. Georgakakis, I. Angelidaki, and V. Mavris, ”Optimization of biogas production by co-digesting whey with diluted poultry manure,” Renewable Energy, vol. 32, no. 13, pp. 2147-2160, 2007.
[32] A. Lehtomäki, S. Huttunen, and J. Rintala, ”Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio,” Resources, Conservation and Recycling, vol. 51, no. 3, pp. 591-609, 2007.
[33] R. Alvarez and G. Liden, ”Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste,” Renewable energy, vol. 33, no. 4, pp. 726-734, 2008.
[34] X. Wang, X. Lu, F. Li, and G. Yang, ”Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition,” PloS one, vol. 9, no. 5, p. e97265, 2014.
[35] N. Ren, A. Wang, and F. Ma, ”Acid-producing fermentative microbe physiological ecology, 2005,” ed: Science Press, Beijing.
[36] N. Ren, M. Liu, A. Wang, J. Ding, and H. Li, ”Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process,” Huan jing ke xue= Huanjing kexue, vol. 24, no. 4, pp. 89-93, 2003.
[37] O. Yenigün and B. Demirel, ”Ammonia inhibition in anaerobic digestion: a review,” Process Biochemistry, vol. 48, no. 5-6, pp. 901-911, 2013.
[38] 洪進雄, ”台灣菇類產業發展現況及展望,” ed: 台中: 農業試驗所, 2019, pp. 1-20.
[39] X.-S. Shi et al., ”Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate,” Chemical Engineering Journal, vol. 244, pp. 258-263, 2014.
[40] G. Avgerinos and D. I. C. Wang, ”Selective solvent delignification for fermentation enhancement,” Biotechnology and bioengineering, vol. 25, no. 1, pp. 67-83, 1983.
[41] M. J. Taherzadeh and K. Karimi, ”Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review,” International journal of molecular sciences, vol. 9, no. 9, pp. 1621-1651, 2008.
[42] J. Weil, P. Westgate, K. Kohlmann, and M. R. Ladisch, ”Cellulose pretreaments of lignocellulosic substrates,” Enzyme and microbial technology, vol. 16, no. 11, pp. 1002-1004, 1994.
[43] J. Sumphanwanich, N. Leepipatpiboon, T. Srinorakutara, and A. Akaracharanya, ”Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae,” Annals of microbiology, vol. 58, no. 2, pp. 219-225, 2008.
[44] F. Carvalheiro, L. C. Duarte, and F. M. Gírio, ”Hemicellulose biorefineries: a review on biomass pretreatments,” Journal of Scientific & Industrial Research, pp. 849-864, 2008.
[45] M. Sonmez and R. Kumar, ”Leaching of waste battery paste components. Part 2: Leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution,” Hydrometallurgy, vol. 95, no. 1-2, pp. 82-86, 2009.
[46] E. Bruni, A. P. Jensen, and I. Angelidaki, ”Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production,” Bioresource technology, vol. 101, no. 22, pp. 8713-8717, 2010.
[47] 鄭幸雄, ”兩段式高溫厭氧生物共消化程序開發應用,” ed: 中工高雄會刊, 2015.
[48] S. Ghanimeh, D. Al-Sanioura, P. Saikaly, and M. El-Fadel, ”Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of SS-OFMSW During the Start-Up Phase,” Waste and Biomass Valorization, pp. 1-8, 2019.
[49] L. T. Fuess et al., ”Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach,” Renewable energy, vol. 122, pp. 674-687, 2018.
[50] R. Ganesh, M. Torrijos, P. Sousbie, A. Lugardon, J. P. Steyer, and J. P. Delgenes, ”Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance,” Waste management, vol. 34, no. 5, pp. 875-885, 2014.
[51] D. Liu, D. Liu, R. J. Zeng, and I. Angelidaki, ”Hydrogen and methane production from household solid waste in the two-stage fermentation process,” Water research, vol. 40, no. 11, pp. 2230-2236, 2006.
[52] A. Rabii, S. Aldin, Y. Dahman, and E. Elbeshbishy, ”A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration,” Energies, vol. 12, no. 6, p. 1106, 2019.
[53] G. Cappai et al., ”An experimental study on fermentative H2 production from food waste as affected by pH,” Waste management, vol. 34, no. 8, pp. 1510-1519, 2014.
[54] L. Alibardi and R. Cossu, ”Pre-treatment of tannery sludge for sustainable landfilling,” Waste management, vol. 52, pp. 202-211, 2016.
指導教授 徐敬衡 Chin-Hang Shu 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明