博碩士論文 106326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.129.22.146
姓名 鄒雲青(Yun-Ching Tsou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用具環境友善的地球化學調控法 現地降低鎘於污染水稻土壤中的生物有效性
(Mitigating cadmium phytoavailability in contaminated paddy soils via in situ eco-friendly geochemical amendments)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究藉由環境友善的地球化學調控手法,於受到重金屬鎘污染之稻作農業用地土壤中添加零價鐵與硫酸鹽,希望可以降低鎘對於稻作植體的生物有效性,並且達到降低鎘累積至食米濃度的目的。試驗結果顯示,在稻作栽種覆水期間的孔隙水中所含有之親硫重金屬濃度包含鎘、銅、鋅等皆有顯著的降低趨勢,並會隨鐵濃度添加量而降低,但硫酸鹽的添加並沒有依照預期的模式將重金屬轉化為金屬硫化物沉澱;在試驗最終所收成的糙米中所檢驗出的鎘的濃度時,鐵的添加確實可以使鎘累積至糙米中的濃度降低在食米標準以內,但硫酸鹽的添加卻仍然有鎘累積的現象產生,表示降低孔隙水中重金屬的濃度仍然無法降低糙米累積吸收鎘的量。土壤中的菌相組成豐富度除了低鐵組比控制組低之外,其餘組別均比控制組高,表示本試驗中所使用的地化調控手法對於環境為友善的;由低鐵組的菌相豐富度比控制組低的結果可知而土壤中菌相組成豐富度會受到金屬壓力的影響使菌相豐富度降低。最後,由土壤中菌群對於鎘的抗性基因czcA 表現量可知在本研究所使用的地球化學調控手法確實能降低重金屬鎘具生物有效性的潛勢;但czcA 的表現量多寡也會受到地化參數的影響。
摘要(英) In this study, zero-valent iron and sulfate were added to the agricultural land
of rice contaminated with heavy metal cadmium by eco-friendly geochemical
amendments. Expected that the bioavailability of cadmium to rice plants can be
mitigated and the accumulation of cadmium could be reduced. The results show
that the concentration of cadmium in porewater was significantly reduced with
the addition of iron concentration, but the addition of sulfate did not convert to
the sulfide in the soil system. Such decreases in the phytoavailability of metals
to rice roots did not significantly lead to mitigating the accumulation of Cd in
the harvested brown rice. The richness of bacterial communities in the soil was
lower than that of the control group except for the addition of the low Fe group,
and the other groups were higher than the control group. These results also
showed that bacterial communities in the soil were affected by the metal pressure
of cadmium, which reduced the bacterial richness. From the amount of cadmium
resistance gene czcA in the soil, it is known that the geochemical regulation
techniques used in this study can indeed reduce the bioavailability of heavy metal
cadmium, but the amount of czcA expression will also be affected by the
geochemical parameters.
In summary, the geochemical amendments in this study are eco-friendly to
the environment. The addition of the valent-iron amendment has a better effect
to stabilize the cadmium in the soil, reduce the phytoavailability of cadmium.
關鍵字(中) ★ 鎘
★ 生物有效性
★ 零價鐵
★ 硫酸鹽
★ 環境友善
★ czcA
★ 植栽試驗
關鍵字(英) ★ Cadmium
★ phyto-availability
★ zero-valent
★ sulfate
★ eco-friendly
★ czcA
★ pot experiments
論文目次 摘要 ...................................................................................................................... i
Abstract ............................................................................................................... ii
誌謝 ..................................................................................................................... ii
目錄 .................................................................................................................... iv
圖目錄 ............................................................................................................... vii
表目錄 .............................................................................................................. viii
第一章 前言 .................................................................................................. 1
1.1 研究背景 .............................................................................................. 1
1.2 研究目的 ................................................................................................... 3
第二章 文獻回顧 .......................................................................................... 4
2.1 稻田土壤受重金屬污染的危害與傳統整治上的缺點 .......................... 4
2.2 鎘在稻作植體當中的傳輸累積和抑制方式 .......................................... 5
2.3 重金屬鎘在環境中的生物有效性 ........................................................... 7
2.4 環境因子對於鎘在土壤系統相態分布之影響 .................................... 10
2.4.1 氧化還原電位(ORP) ....................................................................... 10
2.4.2 pH 值 ................................................................................................ 12
2.4.3 鐵 ..................................................................................................... 12
2.4.4 硫 ..................................................................................................... 14
2.4.5 微生物因子 ..................................................................................... 15
2.5 降低土壤中鎘生物有效性之方法 ........................................................ 17
第三章 研究方法 ........................................................................................ 19
v
3.1 土壤配置 ................................................................................................ 19
3.2 稻作育苗、轉植與栽培 ........................................................................ 20
3.3 孔隙水採樣 ............................................................................................ 22
3.4 植栽試驗所需之化學分析 .................................................................... 23
3.4.1 土壤有機質含量(燃燒法) .............................................................. 23
3.4.2 土壤粒徑分析(比重計試驗法) ...................................................... 24
3.4.3 土壤陽離子交換容量(醋酸納法) .................................................. 26
3.4.4 土壤與孔隙水中pH 與ORP 量測 ................................................ 26
3.4.5 可被稀鹽酸溶解萃取出之土壤總鐵與亞鐵分析 ......................... 27
3.4.6 土壤酸揮發性硫化物(acid-volatile sulfide, AVS)分析 ................. 27
3.4.7 土壤中鎘分析(王水消化法) .......................................................... 28
3.4.8 土壤序列萃取(鎘) ........................................................................... 28
3.4.9 孔隙水中硫酸鹽與硝酸鹽濃度定量 ............................................. 30
3.4.10 孔隙水中DOC 濃度定量 ............................................................. 30
3.4.11 孔隙水中硫化物濃度定量 ............................................................ 31
3.4.12 孔隙水中亞鐵濃度定量 ............................................................... 31
3.4.13 孔隙水中鎘濃度定量 ................................................................... 31
3.4.14 米粒中鎘濃度定量 ....................................................................... 32
3.5 植栽試驗土壤中分生分析 ..................................................................... 32
3.5.1 土壤中菌相DNA 萃取.................................................................... 32
3.5.2 利用PCR 定性土壤中的抗性基因 ................................................. 33
3.5.3 利用qPCR 定量土壤中的抗性基因 ............................................... 33
第四章 結果與討論 .................................................................................... 35
4.1 試驗土壤性質與背景重金屬濃度 ........................................................ 35
4.2 稻作生長過程 ........................................................................................ 38
4.3 土壤系統中對影響鎘穩定性之地化參數分析 .................................... 45
4.4 地化調控對於鎘以及其他重金屬在土壤系統中的穩定性 ................ 47
4.5 地化調控對於鎘在秈稻糙米中的累積性 ............................................ 49
4.6 土壤中的菌相組成 ................................................................................. 52
4.6.1 土壤中的菌相豐富度 ..................................................................... 52
4.6.2 各試驗組別土壤中菌相的差異性 .................................................. 56
4.6.3 抗性基因定性定量結果 .................................................................. 62
第五章 結論與建議 ......................................................................................... 64
5.1 結論 ........................................................................................................ 64
5.2 建議 ........................................................................................................ 65
參考文獻 ........................................................................................................... 66
參考文獻 Adriano, Domy C. 2001. "Trace elements in terrestrial environments:
Biogeochemistry, bioavailability, and risks of metals, 2nd." In.: Springer-
Verlag, New York.
Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M.
Vithanage, S. S. Lee, and Y. S. Ok. 2014. ′Biochar as a sorbent for
contaminant management in soil and water: A review′, Chemosphere, 99:
19-33.
Akter, Masuda, Heleen Deroo, Ahammad Mostafa Kamal, Mohammed Abdul
Kader, Elizabeth Verhoeven, Charlotte Decock, Pascal Boeckx, and
Steven Sleutel. 2018. ′Impact of irrigation management on paddy soil N
supply and depth distribution of abiotic drivers′, Agriculture, Ecosystems
& Environment, 261: 12-24.
Andresen, E., and H. Kupper. 2013. ′Cadmium toxicity in plants′, Met Ions Life
Sci, 11: 395-413.
Borch., Thomas, Ruben Kretzschmar., Andreas Kappler., Philippe Van
Cappellen., Matthew Ginder-Vogel., Andreas Voegelin., and Kate
Campbell. 2010. ′Biogeochemical Redox Processes and their Impact on
Contaminant Dynamics′, Environ. Sci. Technol.: 44, 15–23.
Boshoff, M., M. De Jonge, F. Dardenne, R. Blust, and L. Bervoets. 2014. ′The
impact of metal pollution on soil faunal and microbial activity in two
grassland ecosystems′, Environ Res, 134: 169-80.
67
Bruins, M. R., S. Kapil, and F. W. Oehme. 2000. ′Microbial resistance to metals
in the environment′, Ecotoxicology and Environmental Safety, 45: 198-
207.
Burton, E. D., Bush, R. T., Sullivan, L. A., Hocking, R. K., Mitchell, D. R. G.,
Johnston, S. G., … Jang, L. Y. 2009. ′Iron-Monosulfide Oxidation in
Natural Sediments: Resolving Microbially Mediated S Transformations
Using XANES, Electron Microscopy, and Selective Extractions′,
Environmental Science & Technology, 43(9), 3128–3134.
Burton, Edward D., Richard T. Bush, Scott G. Johnston, Leigh A. Sullivan, and
Annabelle F. Keene. 2011. ′Sulfur biogeochemical cycling and novel Fe–S
mineralization pathways in a tidally re-flooded wetland′, Geochimica et
Cosmochimica Acta, 75: 3434-51.
Cao, Z. Z., M. L. Qin, X. Y. Lin, Z. W. Zhu, and M. X. Chen. 2018. ′Sulfur
supply reduces cadmium uptake and translocation in rice grains (Oryza
sativa L.) by enhancing iron plaque formation, cadmium chelation and
vacuolar sequestration′, Environ Pollut, 238: 76-84.
Chen, Xue-Ping, Wei-Dong Kong, Ji-Zheng He, Wen-Ju Liu, Sally E. Smith, F.
Andrew Smith, and Yong-Guan Zhu. 2008. ′Do water regimes affect ironplaque
formation and microbial communities in the rhizosphere of paddy
rice?′, Journal of Plant Nutrition and Soil Science, 171: 193-99.
Chen, Z., Y. T. Tang, A. J. Yao, J. Cao, Z. H. Wu, Z. R. Peng, S. Z. Wang, S.
Xiao, A. J. M. Baker, and R. L. Qiu. 2017. ′Mitigation of Cd accumulation
in paddy rice (Oryza sativa L.) by Fe fertilization′, Environ Pollut, 231:
68
549-59.
Colombo, Claudio, Giuseppe Palumbo, Ji-Zheng He, Roberto Pinton, and
Stefano Cesco. 2013. ′Review on iron availability in soil: interaction of Fe
minerals, plants, and microbes′, Journal of Soils and Sediments, 14: 538-
48.
Crea, F., C. Foti, D. Milea, and S. Sammartano. 2013. ′Speciation of cadmium in
the environment′, Met Ions Life Sci, 11: 63-83.
de Livera, J., M. J. McLaughlin, G. M. Hettiarachchi, J. K. Kirby, and D. G.
Beak. 2011. ′Cadmium solubility in paddy soils: effects of soil oxidation,
metal sulfides and competitive ions′, Sci Total Environ, 409: 1489-97.
de Oliveira, L. M., L. Q. Ma, J. A. G. Santos, L. R. G. Guilherme, and J. T. Lessl.
2014. ′Effects of arsenate, chromate, and sulfate on arsenic and chromium
uptake and translocation by arsenic hyperaccumulator Pteris vittata L′,
Environmental Pollution, 184: 187-92.
Dittmar, J., A. Voegelin, F. Maurer, L. C. Roberts, S. J. Hug, G. C. Saha, M. A.
Ali, A. B. M. Badruzzaman, and R. Kretzschmar. 2010. ′Arsenic in Soil
and Irrigation Water Affects Arsenic Uptake by Rice: Complementary
Insights from Field and Pot Studies′, Environmental Science &
Technology, 44: 8842-48.
Emerson, D., J. V. Weiss, and J. P. Megonigal. 1999. ′Iron-oxidizing bacteria are
associated with ferric hydroxide precipitates (Fe-plaque) on the roots of
wetland plants′, Applied and Environmental Microbiology, 65: 2758-61.
69
Fiedler, Sabine, Michael J. Vepraskas, and J. L. Richardson. 2007. ′Soil Redox
Potential: Importance, Field Measurements, and Observations.′ in.
Filgueiras, A. V., I. Lavilla, and C. Bendicho. 2002. ′Chemical sequential
extraction for metal partitioning in environmental solid samples′, Journal
of Environmental Monitoring, 4: 823-57.
Fujiwara, Shimpei Uraguchi* and Toru. 2012. ′Cadmium transport and tolerance
in rice: perspectives for reducing grain cadmium accumulation′, Rice,
5(1),5.
Fulda, B., A. Voegelin, and R. Kretzschmar. 2013. ′Redox-controlled changes in
cadmium solubility and solid-phase speciation in a paddy soil as affected
by reducible sulfate and copper′, Environ Sci Technol, 47: 12775-83.
Ghosh, U., R. G. Luthy, G. Cornelissen, D. Werner, and C. A. Menzie. 2011. ′Insitu
Sorbent Amendments: A New Direction in Contaminated Sediment
Management′, Environmental Science & Technology, 45: 1163-68.
Giller, Ken E., Ernst Witter, and Steve P. McGrath. 2009. ′Heavy metals and soil
microbes′, Soil Biology and Biochemistry, 41: 2031-37.
Guerinot, M. L. 1994. ′MICROBIAL IRON TRANSPORT′, Annual Review of
Microbiology, 48: 743-72.
Hell, R. 1997. ′Molecular physiology of plant sulfur metabolism′, Planta, 202:
138-48.
Hemond, David B. Senn and Harold F. 2002. ′Nitrate Controls on Iron and
Arsenic in an Urban Lake′, Science of the Total Environment, 296: 2373-
70
76.
Huang, J. W. W., J. J. Chen, W. R. Berti, and S. D. Cunningham. 1997.
′Phytoremediation of lead-contaminated soils: Role of synthetic chelates
in lead phytoextraction′, Environmental Science & Technology, 31: 800-
05.
Kabata-Pendias., and Krystyna Wiacek. 1985. ′Excessive up take of heavy metals
by plants from contaminated soils.′, Soil Science Annual, 36 (4):33–34.
Kaci, A., F. Petit, P. Lesueur, D. Boust, A. Vrel, and T. Berthe. 2014. ′Distinct
diversity of the czcA gene in two sedimentary horizons from a
contaminated estuarine core′, Environ Sci Pollut Res Int, 21: 10787-802.
Kaplan, H., S. Ratering, P. Felix-Henningsen, and S. Schnell. 2019. ′Stability of
in situ immobilization of trace metals with different amendments revealed
by microbial (13)C-labelled wheat root decomposition and effluxmediated
metal resistance of soil bacteria′, Sci Total Environ, 659: 1082-
89.
King, G. M., and M. A. Garey. 1999. ′Ferric tron reduction by bacteria associated
with the roots of freshwater and marine macrophytes′, Applied and
Environmental Microbiology, 65: 4393-98.
Kirk, Guy. 2004. ′The-Biogeochemistry-of-Submerged-Soils′, Chichester: John
Wiley & Sons.
Kirkham, M. B. 2006. ′Cadmium in plants on polluted soils: Effects of soil
factors, hyperaccumulation, and amendments′, Geoderma, 137: 19-32.
71
Kwon, S., J. Thomas, B. E. Reed, L. Levine, V. S. Magar, D. Farrar, T. S.
Bridges, and U. Ghosh. 2010. ′EVALUATION OF SORBENT
AMENDMENTS FOR IN SITU REMEDIATION OF METALCONTAMINATED
SEDIMENTS′, Environmental Toxicology and
Chemistry, 29: 1883-92.
Lair, G. J., M. H. Gerzabek, and G. Haberhauer. 2007. ′Retention of copper,
cadmium and zinc in soil and its textural fractions influenced by long-term
field management′, European Journal of Soil Science, 58: 1145-54.
Lao, U. L., A. Chen, M. R. Matsumoto, A. Mulchandani, and W. Chen. 2007.
′Cadmium removal from contaminated soil by thermally responsive elastin
(ELPEC20) Biopolymers′, Biotechnology and Bioengineering, 98: 349-55.
Lee, C. H., C. H. Wu, C. H. Syu, P. Y. Jiang, C. C. Huang, and D. Y. Lee. 2016.
′Effects of phosphorous application on arsenic toxicity to and uptake by
rice seedlings in As-contaminated paddy soils′, Geoderma, 270: 60-67.
Lemanceau, P., D. Expert, F. Gaymard, P. A. H. M. Bakker, and J. F. Briat. 2009.
′Role of Iron in Plant–Microbe Interactions.′ in.
Li, H. H., Y. T. Liu, Y. H. Chen, S. L. Wang, M. K. Wang, T. H. Xie, and G.
Wang. 2016. ′Biochar amendment immobilizes lead in rice paddy soils and
reduces its phytoavailability′, Scientific Reports, 6.
Li, H., N. Luo, Y. W. Li, Q. Y. Cai, H. Y. Li, C. H. Mo, and M. H. Wong. 2017.
′Cadmium in rice: Transport mechanisms, influencing factors, and
minimizing measures′, Environ Pollut, 224: 622-30.
72
Liesack, W., S. Schnell, and N. P. Revsbech. 2000. ′Microbiology of flooded rice
paddies′, Fems Microbiology Reviews, 24: 625-45.
Liu, J., K. Q. Li, J. K. Xu, J. S. Liang, X. L. Lu, J. C. Yang, and Q. S. Zhu. 2003.
′Interaction of Cd and five mineral nutrients for uptake and accumulation
in different rice cultivars and genotypes′, Field Crops Research, 83: 271-
81.
Lovley, Derek R., Dawn E. Holmes, and Kelly P. Nevin. 2004. ′Dissimilatory
Fe(III) and Mn(IV) Reduction.′ in.
Luo, L. Y., L. L. Xie, D. C. Jin, B. B. Mi, D. H. Wang, X. F. Li, X. Z. Dai, X. X.
Zou, Z. Zhang, Y. Q. Ma, and F. Liu. 2019. ′Bacterial community response
to cadmium contamination of agricultural paddy soil′, Applied Soil
Ecology, 139: 100-06.
Magrisso, S., Y. Erel, and S. Belkin. 2008. ′Microbial reporters of metal
bioavailability′, Microb Biotechnol, 1: 320-30.
McLaughlin, M. J., R. M. Lambrechts, E. Smolders, and M. K. Smart. 1998.
′Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to
sulfate addition to soil′, Plant and Soil, 202: 217-22.
Meng, B., X. B. Feng, G. L. Qiu, C. W. N. Anderson, J. X. Wang, and L. Zhao.
2014. ′Localization and Speciation of Mercury in Brown Rice with
Implications for Pan-Asian Public Health′, Environmental Science &
Technology, 48: 7974-81.
Nanzyo, M., H. Yaginuma, K. Sasaki, K. Ito, Y. Aikawa, H. Kanno, and T.
73
Takahashi. 2010. ′Identification of vivianite formed on the roots of paddy
rice grown in pots′, Soil Science and Plant Nutrition, 56: 376-81.
Neilands, J. B. 1981. ′IRON ABSORPTION AND TRANSPORT IN
MICROORGANISMS′, Annual Review of Nutrition, 1(1), 27–46.
Neumann, R. B., L. E. Pracht, M. L. Polizzotto, A. B. M. Badruzzaman, and M.
A. Ali. 2014. ′Sealing Rice Field Boundaries in Bangladesh: A Pilot Study
Demonstrating Reductions in Water Use, Arsenic Loading to Field Soils,
and Methane Emissions from Irrigation Water′, Environmental Science &
Technology, 48: 9632-40.
Palleiro, L., C. Patinha, M. L. Rodríguez-Blanco, M. M. Taboada-Castro, and M.
T. Taboada-Castro. 2016. ′Metal fractionation in topsoils and bed
sediments in the Mero River rural basin: Bioavailability and relationship
with soil and sediment properties′, Catena, 144: 34-44.
Qian, Y. Z., C. Chen, Q. Zhang, Y. Li, Z. J. Chen, and M. Li. 2010.
′Concentrations of cadmium, lead, mercury and arsenic in Chinese market
milled rice and associated population health risk′, Food Control, 21: 1757-
63.
Rathnayake, Mallavarapu Megharaj, Nanthi Bolan, and Ravi Naidu. 2010.
′Tolerance of Heavy Metals by Gram Positive Soil Bacteria′, World
Academy of Science, Engineering and Technology, 3: 1045-49.
Reddy, C. N., & Patrick, W. H. 1977. ′Effect of Redox Potential and pH on the
Uptake of Cadmium and Lead by Rice Plants.′, Journal of Environment
Quality, 6(3), 259.
74
Roosa, S., R. Wattiez, E. Prygiel, L. Lesven, G. Billon, and D. C. Gillan. 2014.
′Bacterial metal resistance genes and metal bioavailability in contaminated
sediments′, Environmental Pollution, 189: 143-51.
Rothenberg, S. E., M. Anders, N. J. Ajami, J. F. Petrosino, and E. Balogh. 2016.
′Water management impacts rice methylmercury and the soil microbiome′,
Sci Total Environ, 572: 608-17.
Rothenberg, S. E., L. Windham-Myers, and J. E. Creswell. 2014. ′Rice
methylmercury exposure and mitigation: A comprehensive review′,
Environmental Research, 133: 407-23.
Sebastian, A., and M. N. V. Prasad. 2014. ′Cadmium minimization in rice. A
review′, Agronomy for Sustainable Development, 34: 155-73.
Sebastian, Abin, and Majeti Narasimha Vara Prasad. 2013. ′Cadmium
minimization in rice. A review′, Agronomy for Sustainable Development,
34: 155-73.
Silver, S., and L. T. Phung. 1996. ′Bacterial heavy metal resistance: New
surprises′, Annual Review of Microbiology, 50: 753-89.
Stackebrandt, E., C. Sproer, F. A. Rainey, J. Burghardt, O. Pauker, and H. Hippe.
1997. ′Phylogenetic analysis of the genus Desulfotomaculum: Evidence
for the misclassification of Desulfotomaculum guttoideum and description
of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov.,
comb. nov′, International Journal of Systematic Bacteriology, 47: 1134-
39.
75
Stubner, S. . 2002. ′Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in
rice field soil by real-time PCR with SybrGreen™ detection. ′,
Microbiological Methods, 50(2), 155–164.
Sun, L., S. Chen, L. Chao, and T. H. Sun. 2007. ′Effects of flooding on changes
in Eh, pH and speciation of cadmium and lead in contaminated soil′,
Bulletin of Environmental Contamination and Toxicology, 79: 514-18.
Sundaray, S. K., B. B. Nayak, S. Lin, and D. Bhatta. 2011. ′Geochemical
speciation and risk assessment of heavy metals in the river estuarine
sediments--a case study: Mahanadi basin, India′, J Hazard Mater, 186:
1837-46.
Tang, J. C., W. Y. Zhu, R. Kookana, and A. Katayama. 2013. ′Characteristics of
biochar and its application in remediation of contaminated soil′, Journal of
Bioscience and Bioengineering, 116: 653-59.
Tessier, A., Campbell, P. G. C., & Bisson, M. . 1979. ′Sequential extraction
procedure for the speciation of particulate trace metals. ′, Analytical
Chemistry, 51(7), 844–851.
Tessier, Andre, Pg GC Campbell, and M Bisson. 1979. ′Sequential extraction
procedure for the speciation of particulate trace metals′, Analytical
chemistry, 51: 844-51.
Ure, A. M., Ph Quevauviller, H. Muntau, and B. Griepink. 1993. ′Speciation of
Heavy Metals in Soils and Sediments. An Account of the Improvement
and Harmonization of Extraction Techniques Undertaken Under the
Auspices of the BCR of the Commission of the European Communities′,
76
International Journal of Environmental Analytical Chemistry, 51: 135-51.
Utgikar, V. P., N. Chaudhary, A. Koeniger, H. H. Tabak, J. R. Haines, and R.
Govind. 2004. ′Toxicity of metals and metal mixtures: analysis of
concentration and time dependence for zinc and copper′, Water Res, 38:
3651-8.
Vig, K., M. Megharaj, N. Sethunathan, and R. Naidu. 2003. ′Bioavailability and
toxicity of cadmium to microorganisms and their activities in soil: a
review′, Advances in Environmental Research, 8: 121-35.
Wu, G. M., P. J. Hu, J. W. Zhou, B. Dong, L. H. Wu, Y. M. Luo, and P. Christie.
2019. ′Sulfur application combined with water management enhances
phytoextraction rate and decreases rice cadmium uptake in a Sedum
plumbizincicola - Oryza sativa rotation′, Plant and Soil, 440: 539-49.
Wu, S. C., Y. M. Luo, K. C. Cheung, and M. H. Wong. 2006. ′Influence of
bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A
laboratory study′, Environ Pollut, 144: 765-73.
Zhang, C. H., Y. Ge, H. Yao, X. Chen, and M. K. Hu. 2012. ′Iron oxidationreduction
and its impacts on cadmium bioavailability in paddy soils: a
review′, Frontiers of Environmental Science & Engineering, 6: 509-17.
Zhang, Hongguo, Huosheng Li, Meng Li, Dinggui Luo, Yongheng Chen, Diyun
Chen, Hailing Luo, Zhenxin Chen, and Keke Li. 2018. ′Immobilizing
Metal-Resistant Sulfate-Reducing
Bacteria for Cadmium Removal
from Aqueous Solutions′, Polish Journal of Environmental Studies, 27: 2851-59.
77
Zhang, J., W. C. Sun, Z. J. Li, Y. C. Liang, and A. L. Song. 2009. ′Cadmium fate
and tolerance in rice cultivars′, Agronomy for Sustainable Development,
29: 483-90.
指導教授 林居慶 審核日期 2019-12-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明