博碩士論文 106326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.144.127.232
姓名 王新閎(Xing-Hong Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用電容去離子系統處理氟系廢水之研究
(Treatment of Fluoride-containing Wastewater By Capacitive Deionization)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-4-1以後開放)
摘要(中) 電容去離子技術(capacitive deionization, CDI)為一種新興高級水處理技術,其利用帶電之電極吸附水中離子,優點甚多,為未來發展的趨勢之一。現今含氟廢水以半導體廠為大宗,包含廠內製程及其洗滌廢水,來源複雜,需加以處理始得排放,故本研究以預先加藥後,利用CDI去除氫氟酸及直接濃縮氟化銨之方式探討,以CDI技術降低水中氟離子濃度。研究中以氫氧化鉀為最佳之藥劑,並分別利用不同之K/F比進行。結果發現當K/F為1.5時,有最佳的吸附量0.090 mM F g 1-C,且也有最好的脫附效率,以及處理後之酸鹼值對環境水體的衝擊影響較小。而在濃縮的部分,以不同的操作條件進行濃縮。結果顯示充電至導電度為初始值時,所得到的濃縮率最佳為1.3倍。此外,本研究也擬合了動力學,結果顯示Elovich model最為符合,其R2均高於0.95。此動力模式表示了吸附氟化物的過程中牽涉化學鍵的變化。故本研究利用X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)測定使用後的電極表面C1s化學態之組成變化,得知Semicovalent C-F的比例由6.37%提升至6.73%與Covalent C-F的比例由2.27%提升至4.86%。
摘要(英) Capacitive deionization (CDI) is an emerging advanced water treatment technology. It adsorbs ions in the water with charged electrodes. It has many advantages and is one of the future development trends. Fluoride-containing wastewater is one major problem semiconductor industry for its large amount and possible hazards. The source of fluoride is complex and must be treated and then disposed without causing environmental burden.
The objectives of this work are two to remove the fluoride by choosing a proper chemical and to concentrate fluoride. According to the electrosorption amount and efficiency, potassium hydroxide was the best chemical and the optimal K/F ratios was 1.5. Also, at this condition, the pH value after treatment has the least impact to the environment. In terms of concentration, the best concentration ratio was obtained by charging the system until the conductivity rose to the initial value, at which the F- was concentrated 1.3 times.
The kinetics results showed that the Elovich model fitted the experimental data best, with R2 above 0.95. This kinetic model suggested changes in chemical bonds involved in the electrosorption process. X-ray photoelectron spectroscopy (XPS) showed that the semicovalent C-F bonds increased from 6.37% to 6.73% and the covalent C F bonds increased from 2.27% to 4.86%.
關鍵字(中) ★ 電容去離子
★ 氟化物
★ 氫氧化鉀
★ 濃縮
關鍵字(英) ★ capacitive deionization
★ fluoride
★ potassium hydroxide
★ concentrated
論文目次 摘要 I
ABSTRACT II
誌謝 III
CONTENT V
List of Figures IX
List of Tables XI
CHAPTER I. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 3
CHAPTER II. LITERATURE REVIEW 5
2.1 Capacitive deionization 5
2.1.1 Advantages of capacitive deionization 5
2.1.2 Theory of capacitive deionization 6
2.1.3 Capacitor 7
2.1.4 Theory of electric double layer 9
2.1.5 Electric double layer overlap 12
2.1.6 Specific adsorption 13
2.2 Factors affecting capacitive deionization 14
2.2.1 Effects of electrode material characteristics 14
2.2.2 Effects of external conditions 15
2.2.3 Effects of ion characteristics 16
2.3 Fluoride in aqueous solution 18
2.3.1 Basic characteristics 18
2.3.2 Technologies for treating fluoride wastewater 19
CHAPTER III. MATERIALS AND MTHODS 23
3.1 Preparation of activation carbon electrodes 23
3.1.1. Pretreatment of activated carbon 23
3.1.2 Preparation of electrodes 23
3.2 Characterization of AC electrodes 25
3.3 Capacitive deionization of electrosorption
fluoric acid 28
3.4 Analysis of fluoride (NaF, KF, NH4F) 32
3.5 Data analysis 34
3.5.1. Experimental calculations 34
3.5.2 Kinetic models 36
CHAPTER IV. RESULTS AND DISCUSSION 38
4.1 Characterization of activated carbon electrodes 38
4.1.1. Functional groups on active carbon 38
4.1.2. Specific surface area and pore size distribution of
AC 40
4.1.3. Electrochemical properties of activated carbon
electrodes 45
4.2 Removal of hydrofluoric acid by CDI 48
4.2.1. Effects of different chemical on fluoride removal
48
4.2.2. Effects of K/F ratio on fluoride removal 52
4.2.3. Effects of applied voltage on fluoride removal 56
4.2.4. Effects of initial concentration on fluoride
removal 58
4.2.5. Regeneration of electrode 60
4.3 Kinetics of fluoride electrosorption 62
4.4 Characterization of used electrodes 65
4.5 Removal of ammonium fluoride by CDI 69
4.5.1. Effects of applied voltage on fluoride removal 69
4.5.2. Effects of initial concentration on fluoride
removal 70
4.5.3 Recovery of ammonium fluoride 72
4.6 Removal of F- from real wastewater 80
CHAPTER V. CONCLUSION AND SUGGESTION 84
5.1 Conclusion 84
5.2 Suggestion 85
APPENDIX 86
REFERENCES 88

參考文獻 Aldaco, R., Irabien, A., and Luis, P.,”Fluidized bed reactor for fluoride removal”, Chemical Engineering Journal, 107, 113-117(2005).
Alencherry, T., Naveen, A., Ghosh, S., Daniel, J., and Venkataraghavan, R.,”Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization”, Desalination, 415, 14-19(2017).
Amer, F., Bouldin, D., Black, C., and Duke, F.,”Characterization of soil phosphorus by anion exchange resin adsorption and P 32-equilibration”, Plant and Soil, 6, 391-408(1955).
Anderson, M.A., Cudero, A.L., and Palma, J.,”Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?”, Electrochimica Acta, 55, 3845-3856(2010).
Aoki, K.J., and Chen, J.,”Tips of Voltammetry”, Voltammetry, (2018).
Azizian, S.,”Kinetic models of sorption: a theoretical analysis”, Journal of Colloid and Interface Science, 276, 47-52(2004).
Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G.,”Electrochemical Methods: Fundamentals and Applications”, 2, (1980).
Bhatnagar, A., Kumar, E., and Sillanpää, M.,”Fluoride removal from water by adsorption—a review”, Chemical Engineering Journal, 171, 811-840(2011).
Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, T.F.,”Advanced carbon aerogels for energy applications”, Energy & Environmental Science, 4, 656-667(2011).
Bockris, J.O.M., and Reddy, A.K.,”Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science”, 2, (2000).
Cattarin, S., Guerriero, P., Musiani, M., Tuissi, A., and Vázquez-Gómez, L.,”Electrochemical etching of NiTi alloy in a neutral fluoride solution”, Journal of The Electrochemical Society, 156, C428-C434(2009).
Chang, H.-Y., Chang, H.-C., and Lee, K.-Y.,”Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application”, Vacuum, 87, 164-168(2013).
Chao, L., Liu, Z., Zhang, G., Song, X., Lei, X., Noyong, M., Simon, U., Chang, Z., and Sun, X.,”Enhancement of capacitive deionization capacity of hierarchical porous carbon”, Journal of Materials Chemistry A, 3, 12730-12737(2015).
Chen, Z., Zhang, H., Wu, C., Wang, Y., and Li, W.,”A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization”, Desalination, 369, 46-50(2015).
Chien, S., and Clayton, W.,”Application of Elovich equation to the kinetics of phosphate release and sorption in soils 1”, Soil Science Society of America Journal, 44, 265-268(1980).
Chmiola, J., Yushin, G., Dash, R.K., Hoffman, E.N., Fischer, J.E., Barsoum, M.W., and Gogotsi, Y.,”Double-layer capacitance of carbide derived carbons in sulfuric acid”, Electrochemical and Solid-State Letters, 8, A357-A360(2005).
Dong, Q., Wang, G., Wu, T., Peng, S., and Qiu, J.,”Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes”, Journal of Colloid and Interface Science, 446, 373-378(2015).
Du, X., Guo, P., Song, H., and Chen, X.,”Graphene nanosheets as electrode material for electric double-layer capacitors”, Electrochimica Acta, 55, 4812-4819(2010).
El-Dessouky, H.T., Ettouney, H.M., and Al-Roumi, Y.,”Multi-stage flash desalination: present and future outlook”, Chemical Engineering Journal, 73, 173-190(1999).
Evans, R., and Jurinak, J.,”Kinetics of phosphate release from a desert soil”, Soil Science, 121, 205-211(1976).
Farmer, J.C., Bahowick, S.M., Harrar, J.E., Fix, D.V., Martinelli, R.E., Vu, A.K., and Carroll, K.L.,”Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water”, Energy & Fuels, 11, 337-347(1997).
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F.,”Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes”, Journal of the Electrochemical Society, 143, 159-169(1996).
Figueiredo, J.L., Pereira, M., Freitas, M., and Orfao, J.,”Modification of the surface chemistry of activated carbons”, Carbon, 37, 1379-1389(1999).
Foo, K., and Hameed, B.,”A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects”, Journal of Hazardous Materials, 170, 552-559(2009).
Frackowiak, E., and Beguin, F.,”Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39, 937-950(2001).
Gabelich, C.J., Tran, T.D., and Suffet, I.M.,”Electrosorption of inorganic salts from aqueous solution using carbon aerogels”, Environmental Science & Technology, 36, 3010-3019(2002).
Gao, Y., Pan, L., Li, H., Zhang, Y., Zhang, Z., Chen, Y., and Sun, Z.,”Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes”, Thin Solid Films, 517, 1616-1619(2009).
Garcia-Segura, S., Bellotindos, L.M., Huang, Y.-H., Brillas, E., and Lu, M.-C.,”Fluidized-bed Fenton process as alternative wastewater treatment technology—A review”, Journal of the Taiwan Institute of Chemical Engineers, 67, 211-225(2016).
Giguere, P.A., and Turrell, S.,”The nature of hydrofluoric acid. A spectroscopic study of the proton-transfer complex H3O+. cntdot.. cntdot.. cntdot. F”, Journal of the American Chemical Society, 102, 5473-5477(1980).
Grahame, D.C.,”The electrical double layer and the theory of electrocapillarity”, Chemical Reviews, 41, 441-501(1947).
Graveland, A., Van Dijk, J., De Moel, P., and Oomen, J.,”Developments in water softening by means of pellet reactors”, Journal‐American Water Works Association, 75, 619-625(1983).
Hack, E., Hümmer, D., and Franzreb, M.,”Concentration of crotonic acid using capacitive deionization technology”, Separation and Purification Technology, 209, 658-665(2019).
Hou, C.-H., Liang, C., Yiacoumi, S., Dai, S., and Tsouris, C.,”Electrosorption capacitance of nanostructured carbon-based materials”, Journal of Colloid and Interface Science, 302, 54-61(2006).
Huang, C., Pan, J.R., Lee, M., and Yen, S.,”Treatment of high‐level arsenic‐containing wastewater by fluidized bed crystallization process”, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82, 289-294(2007).
Huang, S.-Y., Fan, C.-S., and Hou, C.-H.,”Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization”, Journal of Hazardous Materials, 278, 8-15(2014).
Huang, W., Zhang, Y., Bao, S., and Song, S.,”Desalination by capacitive deionization with carbon-based materials as electrode: a review”, Surface Review and Letters, 20, 1330003(2013).
Ince-Gunduz, B.S., Alpern, R., Amare, D., Crawford, J., Dolan, B., Jones, S., Kobylarz, R., Reveley, M., and Cebe, P.,”Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling”, Polymer, 51, 1485-1493(2010).
Jeon, S.-i., Park, H.-r., Yeo, J.-g., Yang, S., Cho, C.H., Han, M.H., and Kim, D.K.,”Desalination via a new membrane capacitive deionization process utilizing flow-electrodes”, Energy & Environmental Science, 6, 1471-1475(2013).
Jia, B., and Zhang, W.,”Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review”, Nanoscale Research Letters, 11, 64(2016).
Kim, C., and Yang, K.,”Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning”, Applied Physics Letters, 83, 1216-1218(2003).
Kim, K.H., Kang, D.H., Kim, M.J., and Lee, Y.-S.,”Effect of CF bonds introduced by fluorination on the desalination properties of activated carbon as the cathode for capacitive deionization”, Desalination, 457, 1-7(2019).
Kim, M.-H., Yang, J.-H., Kang, Y.-M., Park, S.-M., Han, J.T., Kim, K.-B., and Roh, K.C.,”Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 535-539(2014).
Kitazumi, Y., Shirai, O., Yamamoto, M., and Kano, K.,”Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation”, Electrochimica Acta, 112, 171-175(2013).
Koresh, J., and Soffer, A.,”Stereoselectivity in ion electroadsorption and in double-layer charging of molecular sieve carbon electrodes”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 147, 223-234(1983).
Lee, J.-B., Park, K.-K., Eum, H.-M., and Lee, C.-W.,”Desalination of a thermal power plant wastewater by membrane capacitive deionization”, Desalination, 196, 125-134(2006).
Lewandowski, A., and Galinski, M.,”Practical and theoretical limits for electrochemical double-layer capacitors”, Journal of Power Sources, 173, 822-828(2007).
Li, H., Zou, L., Pan, L., and Sun, Z.,”Novel graphene-like electrodes for capacitive deionization”, Environmental Science & Technology, 44, 8692-8697(2010a).
Li, H., Zou, L., Pan, L., and Sun, Z.,”Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization”, Separation and Purification Technology, 75, 8-14(2010b).
Li, L., Song, H., and Chen, X.,”Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors”, Electrochimica Acta, 51, 5715-5720(2006).
Li, Y., Jiang, Y., Wang, T.-J., Zhang, C., and Wang, H.,”Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode”, Separation and Purification Technology, 172, 415-421(2017).
Li, Y., Zhang, C., Jiang, Y., and Wang, T.-J.,”Electrically enhanced adsorption and green regeneration for fluoride removal using Ti (OH) 4-loaded activated carbon electrodes”, Chemosphere, 200, 554-560(2018).
Li, Y., Zhang, C., Jiang, Y., Wang, T.-J., and Wang, H.,”Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization”, Desalination, 399, 171-177(2016).
Lin, C., Ritter, J.A., and Popov, B.N.,”Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels”, Journal of the Electrochemical Society, 146, 3639-3643(1999).
Lins, L.C., Livi, S., Maréchal, M., Duchet-Rumeau, J., and Gérard, J.-F.,”Structural dependence of cations and anions to building the polar phase of PVDF”, European Polymer Journal, 107, 236-248(2018).
Low, M.,”Kinetics of chemisorption of gases on solids”, Chemical Reviews, 60, 267-312(1960).
Lu, Q., Chen, J.G., and Xiao, J.Q.,”Nanostructured electrodes for high‐performance pseudocapacitors”, Angewandte Chemie International Edition, 52, 1882-1889(2013).
McAuliffe, C., Hall, N., Dean, L., and Hendricks, S.,”Exchange reactions between phosphates and soils: hydroxylic surfaces of soil minerals”, Soil Sci Soc Am Proc, 12, 119-123(1947).
Mombeshora, E.T., Simoyi, R., Nyamori, V.O., and Ndungu, P.G.,”Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells”, South African Journal of Chemistry, 68, 153-164(2015).
Morse, G., Brett, S., Guy, J., and Lester, J.,”Phosphorus removal and recovery technologies”, Science of the Total Environment, 212, 69-81(1998).
Mossad, M., and Zou, L.,”Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts”, Journal of Hazardous Materials, 244, 387-393(2013).
Mubita, T., Dykstra, J., Biesheuvel, P., Van Der Wal, A., and Porada, S.,”Selective adsorption of nitrate over chloride in microporous carbons”, Water Research, 164, 114885(2019).
Oren, Y.,”Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)”, Desalination, 228, 10-29(2008).
Pan, J., Zheng, Y., Ding, J., Gao, C., Van der Bruggen, B., and Shen, J.,”Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane”, Industrial & Engineering Chemistry Research, 57, 7048-7053(2018).
Pandolfo, A., and Hollenkamp, A.,”Carbon properties and their role in supercapacitors”, Journal of Power Sources, 157, 11-27(2006).
Peng, C., Lang, J., Xu, S., and Wang, X.,”Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors”, RSC Advances, 4, 54662-54667(2014).
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J., Keesman, K., Kaskel, S., Biesheuvel, P., and Presser, V.,”Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization”, Energy & Environmental Science, 6, 3700-3712(2013).
Seo, S.-J., Jeon, H., Lee, J.K., Kim, G.-Y., Park, D., Nojima, H., Lee, J., and Moon, S.-H.,”Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications”, Water Research, 44, 2267-2275(2010).
Shao, Q., Tang, J., Lin, Y., Li, J., Qin, F., Yuan, J., and Qin, L.-C.,”Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes”, Journal of Power Sources, 278, 751-759(2015).
Shon, H., Vigneswaran, S., Kim, I.S., Cho, J., and Ngo, H.,”Effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent”, Journal of Membrane Science, 234, 111-120(2004).
Sing, K.S.,”Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)”, Pure and Applied Chemistry, 57, 603-619(1985).
Sparks, D.L.,”Kinetics of ionic reactions in clay minerals and soils”, Advances in Agronomy, 38, 231-266(1986).
Sun, Z., Li, Q., Chai, L., Shu, Y., Wang, Y., and Qiu, D.,”Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization”, Chemosphere, 229, 341-348(2019).
Suss, M., Porada, S., Sun, X., Biesheuvel, P., Yoon, J., and Presser, V.,”Water desalination via capacitive deionization: what is it and what can we expect from it?”, Energy & Environmental Science, 8, 2296-2319(2015).
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.,”Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”, Pure and Applied Chemistry, 87, 1051-1069(2015).
Tomar, V., and Kumar, D.,”A critical study on efficiency of different materials for fluoride removal from aqueous media”, Chemistry Central Journal, 7, 51(2013).
UN, W.,”2018 UN World Water Development Report, Nature-based Solutions for Water”, (2018).
Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., and Qiu, J.,”Activated carbon nanofiber webs made by electrospinning for capacitive deionization”, Electrochimica Acta, 69, 65-70(2012).
Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., and Qiu, J.,”Highly mesoporous activated carbon electrode for capacitive deionization”, Separation and Purification Technology, 103, 216-221(2013).
Wei, K., Zhang, Y., Han, W., Li, J., Sun, X., Shen, J., and Wang, L.,”A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study”, Desalination, 420, 70-78(2017).
Wu, P., Xia, L., Dai, M., Lin, L., and Song, S.,”Electrosorption of fluoride on TiO2-loaded activated carbon in water”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 502, 66-73(2016).
Xing, W., Qiao, S., Ding, R., Li, F., Lu, G., Yan, Z., and Cheng, H.,”Superior electric double layer capacitors using ordered mesoporous carbons”, Carbon, 44, 216-224(2006).
Xu, P., Drewes, J.E., Heil, D., and Wang, G.,”Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology”, Water Research, 42, 2605-2617(2008).
Yang, K.-L., Ying, T.-Y., Yiacoumi, S., Tsouris, C., and Vittoratos, E.S.,”Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model”, Langmuir, 17, 1961-1969(2001).
Ying, T.-Y., Yang, K.-L., Yiacoumi, S., and Tsouris, C.,”Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel”, Journal of Colloid and Interface Science, 250, 18-27(2002).
Yuh-Shan, H.,”Citation review of Lagergren kinetic rate equation on adsorption reactions”, Scientometrics, 59, 171-177(2004).
Zhang, C., He, D., Ma, J., Tang, W., and Waite, T.D.,”Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review”, Water Research, 128, 314-330(2018).
Zhang, L.L., and Zhao, X.,”Carbon-based materials as supercapacitor electrodes”, Chemical Society Reviews, 38, 2520-2531(2009).
Zhang, W., and Jia, B.,”Toward anti-fouling capacitive deionization by using visible-light reduced TiO 2/graphene nanocomposites”, MRS Communications, 5, 613-617(2015).
王凱平.”奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究”, 碩士, 化學工程學系, 台南市, (2005).
李岳青.”利用碳氣凝膠紙對硝酸根離子進行電容去離子之研究”, 碩士, 環境工程研究所, 桃園市, (2015).
姚洋羽.”離子交換法處理含氫氟酸與氟矽酸的半導體廢水之研究”, 碩士, 化學工程與材料科學學系, 桃園市, (2003).
曹桂彰.”低濃度含氟廢水處理系統改善-以某半導體廠為例”, 碩士, 環境工程學系所, 台中市, (2011).
游絢博.”陽極單軸間歇運動下之直流, 脈衝微電析鎳”, 碩士, 機械工程研究所, 桃園市, (2000).
黃淑芬.”氟系廢水中加鈣去氟之顆粒形成影響因子研究”, 碩士, 環境工程系所, 新竹市, (2007).
楊學明.”高濃度氫氟酸廢液回收製備氟化鈣之研究-以結晶矽太陽能電池廠為例”, 碩士, 環境工程研究所, 桃園市, (2015).
廖仲洲.”利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討”, 碩士, 環境工程研究所, 桃園市, (2006).
鄭為元.”無機鹽類在碳氣凝膠電容去離子系統中之競爭吸附”, 碩士, 環境工程研究所, 桃園市, (2016).
鍾鼎文.”晶圓廠濕蝕刻機台排水分流系統與氟系廢水處理設施效能評估研究”, 碩士, 環境工程研究所, 新竹市, (2007).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2020-4-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明