博碩士論文 106326025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.200.252.156
姓名 陳欣妤(Hsin-Yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響
(Influence of zero-valent iron and sulfate amendments on mercury bioavailability and indigenous bacterial community composition in the paddy rhizosphere)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響
★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例
★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例
★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢
★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例
★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由施加零價鐵(亞鐵在現地間接生成)及硫酸鹽的地球化學調控法,進行土壤植栽試驗探究此調控方法是否能夠有效降低稻田土壤中親硫金屬汞的生物可利用性,以及是否對於此系統具有環境友善性。土壤植栽試驗結果顯示,孔隙水中總汞的變化量在各個處理組中皆有下降的趨勢且較相似,而在孔隙水中甲基汞的變化量以添加零價鐵的組別具有明顯的下降趨勢,只添加硫酸鹽組別甲基汞雖然也有下降的趨勢,但與添加零價鐵的組別仍有程度上的差異。在整個植栽試驗期間,添加硫酸鹽的試驗組別並未依照預期的模式將重金屬轉化為金屬硫化物沉澱在土壤中。在稻作收成結果中,添加鐵確實可以降低糙米中甲基汞的濃度與累積,使其符合法規食米標準;但添加硫酸鹽使糙米中甲基汞累積上升,甚至在只添加硫酸鹽的組別其糙米中甲基汞濃度超過法規標準。各個處理組的菌相組成以及物種多樣性與控制組相似,表示本次所使用的地球化學調控手法對於環境具有友善性。藉由汞甲基化基因(即hgcAB)的表現量加以佐證汞的生物有效性是否降低,在只添加零價鐵的組別中hgcA基因的含量與控制組相比有顯著的下降,表示零價鐵的添加可以有效降低生物可利用之無機汞,因此藉以佐證上述地球化學中所觀察到的結果,證明此地球化學調控手法對於降低汞的生物有效性有著顯著的成功。
摘要(英) We applied a geochemical control method of addition to zero-valent iron and sulfate and investigated whether this control method can effectively reduce the bioavailability of mercury in paddy soil by soil planting experiments. And whether it is environmentally friendly for this system. The results of soil planting experiments
showed that the changes of total mercury in pore water had a downward trend and were similar in each treatment group, while the changes of methylmercury in pore water with the addition of zero-valent iron had obvious downward trend effects. The methylmercury in the sulfate-only group also has a downward trend, but there is still
a degree of difference from the group with zero-valent iron. Throughout the planting experiment, sulfate did not convert heavy metals into sulfides and precipitate in the
soil according to the expected pattern; in the rice harvest results, the addition of iron did reduce the concentration of methylmercury in rice. Degree and accumulation to make it meet the regulations of rice standards; however, the addition of sulfate increased the accumulation of methylmercury in brown rice, and even in the group added only sulfate, the concentration of methylmercury in brown rice exceeded the legal standard. The composition of the bacteria and the species diversity are similar to the control group, indicating that the geochemical control method used is friendly to the environment; the microbial with the mercury methylation gene hgcAB is evidenced by the mercury bioavailability, the content of hgcA gene in the group added only zero-valent iron has a significant decrease compared with the control group.
關鍵字(中) ★ 稻作植栽
★ 零價鐵
★ 硫酸鹽
★ 汞甲基化基因( hgcAB)
★ 菌相組成
關鍵字(英)
論文目次 摘要 .................................................................... i
Abstract ............................................................................................................ ii
誌謝 ................................................................................................................ iii
圖目錄 ............................................................................................................ vii
表目錄 ............................................................................................................. ix
一、前言 .......................................................................................................... 1
1.1 研究動機 ................................................................................................... 1
1.2 研究目的 ................................................................................................... 2
二、文獻探討 .................................................................................................. 3
2.1 環境中汞的排放與傳輸 ........................................................................... 3
2.2 環境中甲基汞的生成與危害 ................................................................... 4
2.3 稻田中甲基汞的生成與累積 ................................................................... 6
2.4 甲基汞的生成潛勢因子 ........................................................................... 9
2.4.1 微生物與鐵、硫之關係………………………………………………….9
2.4.2 汞甲基化基因……………………………………………………………..11
2.4.3 環境條件……………………………………………………………………12
2.5 降低稻田中汞污染之方法 ..................................................................... 14
三、研究方法 ................................................................................................ 16
3.1 土壤配製 ................................................................................................. 16
3.2 稻作栽種 ................................................................................................. 18
3.3 孔隙水採集 ............................................................................................. 21
3.4 根圈土壤採集 ......................................................................................... 22
v
3.5 化學分析 ................................................................................................. 23
3.5.1 土壤有機質含量(燃燒法)………………………………………………23
3.5.2 土壤粒徑分析(比重計試驗法)………………………………………..24
3.5.3 土壤陽離子交換容量(醋酸鈉法)………………. ……………………26
3.5.4 土壤/孔隙水pH 與ORP 測量…………………………………………27
3.5.5 可被稀鹽酸溶萃之土壤總鐵與亞鐵分析…………………………..27
3.4.6 土壤酸揮發性硫化物分析(acid-volatile sulfide, AVS)…………..28
3.4.7 孔隙水硫酸鹽與硝酸鹽濃度定量…………………………………….28
3.4.8 孔隙水中溶解性有機碳濃度定量…………………………………….29
3.4.9 孔隙水硫化物濃度定量…………………………………………………29
3.4.10 孔隙水亞鐵濃度定量…………………………………………………..29
3.4.11 土壤總汞分析(US EPA Method 1631)……………………………..30
3.4.12 孔隙水總汞濃度定量(US EPA Method 1631)……………………30
3.4.13 米粒總汞濃度定量(US EPA Method 1631)……………………….30
3.6 分生實驗 ................................................................................................. 31
3.6.1 土壤DNA 萃取……………………………………………………………31
3.6.2 樣品PCR 放大…………………………………………………………….31
3.6.3 樣品qPCR 定量…………………………………………………………..31
四、結果與討論 ............................................................................................ 35
4.1 盆栽試驗土壤基本特性………………………………………………..35
4.2 稻作生長過程 ......................................................................................... 38
4.3 土壤與孔隙水之生地化參數 ................................................................. 42
vi
4.4 零價鐵與硫酸鹽對於汞的穩定性影響................................................. 45
4.5 零價鐵與硫酸鹽對於汞累積在糙米的影響 ........................................ 49
4.6 稻作根圈土壤菌相分析 ......................................................................... 52
4.7 分生實驗結果探討 ................................................................................. 61
4.7.1 汞甲基化基因( hgcA )…………………………………………………..61
五、結論與建議 ............................................................................................ 64
5.1 結論 ......................................................................................................... 64
5.2 建議 ......................................................................................................... 65
參考文獻 ........................................................................................................ 66
參考文獻 Aiken, G.R., Gilmour, C.C., Krabbenhoft, D.P., Orem, W., 2011. Dissolved Organic
Matter in the Florida Everglades: Implications for Ecosystem Restoration. Critical
Reviews in Environmental Science and Technology 41, 217-248.
Bae, H.-S., Dierberg, F.E., Ogram, A., 2019. Periphyton and Flocculent Materials
Are Important Ecological Compartments Supporting Abundant and Diverse
Mercury Methylator Assemblages in the Florida Everglades. Applied and
environmental microbiology 85, e00156-00119.
Bae, H.S., Dierberg, F.E., Ogram, A., 2014. Syntrophs Dominate Sequences
Associated with the Mercury Methylation-Related Gene hgcA in the Water
Conservation Areas of the Florida Everglades. Applied and environmental
microbiology 80, 6517-6526.
Bloom, N.S., 1992. ON THE CHEMICAL FORM OF MERCURY IN EDIBLE
FISH AND MARINE INVERTEBRATE TISSUE. Canadian Journal of Fisheries
and Aquatic Sciences 49, 1010-1017.
Bo, M., Feng, X., Qiu, G., Li, P., Shang, L., 2012. Inorganic mercury accumulation
in rice (Oryza sativa L.). Environmental toxicology and chemistry / SETAC 31,
2093-2098.
Cao, Z.-Z., Qin, M.-L., Lin, X., Zhu, Z.-W., Chen, M.-X., 2018. Sulfur supply
reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by
enhancing iron plaque formation, cadmium chelation and vacuolar sequestration.
Environmental pollution (Barking, Essex : 1987) 238, 76-84.
Charlet, L., Bosbach, D., Peretyashko, T., 2002. Natural attenuation of TCE, As, Hg
linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology
67
190, 303-319.
Christensen, G.A., Wymore, A.M., King, A.J., Podar, M., Hurt, R.A., Santillan,
E.U., Soren, A., Brandt, C.C., Brown, S.D., Palumbo, A.V., Wall, J.D., Gilmour,
C.C., Elias, D.A., 2016. Development and Validation of Broad-Range Qualitative
and Clade-Specific Quantitative Molecular Probes for Assessing Mercury
Methylation in the Environment. Applied and environmental microbiology 82,
6068-6078.
Clarkson, T.W., 1993. MERCURY - MAJOR ISSUES IN ENVIRONMENTALHEALTH.
Environmental Health Perspectives 100, 31-38.
Compeau, G.C., Bartha, R., 1985. Sulfate-reducing bacteria: principal methylators
of mercury in anoxic estuarine sediment. Applied and environmental microbiology
50, 498-502.
Engstrom, D.R., 2007. Fish respond when the mercury rises. Proceedings of the
National Academy of Sciences 104, 16394-16395.
EPA, U.S., 1996. Recent Developments for In Situ Treatment of Metal
Contaminated Soils.
EPA, U.S., 1997. Technology Alternatives for the Remediation of Soils
Contaminated with As, Cd, Cr,Hg, and Pb.
Feng, X., Li, P., Qiu, G., Wang, S., Li, G., Shang, L., Meng, B., Jiang, H., Bai, W.,
Li, Z., Fu, X., 2008. Human Exposure To Methylmercury through Rice Intake in
Mercury Mining Areas, Guizhou Province, China. Environmental science &
technology 42, 326-332.
Fleming, E.J., Mack, E.E., Green, P.G., Nelson, D.C., 2006. Mercury methylation
from unexpected sources: molybdate-inhibited freshwater sediments and an ironreducing
bacterium. Applied and environmental microbiology 72, 457-464.
Fulda, B., Voegelin, A., Kretzschmar, R., 2013. Redox-Controlled Changes in
68
Cadmium Solubility and Solid-Phase Speciation in a Paddy Soil As Affected by
Reducible Sulfate and Copper. Environmental science & technology 47, 12775-
12783.
Gilmour, C., Krabbenhoft, D., Orem, W., Aiken, G., Roden, E., 2007. Status Report
on ACME Studies on the Control of Mercury Methylation and Bioaccumulation in
the Everglades.
Gilmour, C.C., Henry, E.A., 1991. Mercury methylation in aquatic systems affected
by acid deposition. Environ Pollut 71, 131-169.
Gilmour, C.C., Henry, E.A., Mitchell, R., 1992. Sulfate stimulation of mercury
methylation in fresh-water sediments. Environ. Sci. Technol. 26, 2281.
Gilmour, C.C., Podar, M., Bullock, A.L., Graham, A.M., Brown, S.D., Somenahally,
A.C., Johs, A., Hurt, R.A., Bailey, K.L., Elias, D.A., 2013a. Mercury Methylation
by Novel Microorganisms from New Environments. Environmental science &
technology 47, 11810-11820.
Gilmour, C.C., Riedel, G.S., Riedel, G., Kwon, S., Landis, R., Brown, S.S., Menzie,
C.A., Ghosh, U., 2013b. Activated Carbon Mitigates Mercury and Methylmercury
Bioavailability in Contaminated Sediments. Environmental science & technology
47, 13001-13010.
Harris, R.C., Rudd, J.W.M., Amyot, M., Babiarz, C.L., Beaty, K.G., Blanchfield,
P.J., Bodaly, R.A., Branfireun, B.A., Gilmour, C.C., Graydon, J.A., Heyes, A.,
Hintelmann, H., Hurley, J.P., Kelly, C.A., Krabbenhoft, D.P., Lindberg, S.E., Mason,
R.P., Paterson, M.J., Podemski, C.L., Robinson, A., Sandilands, K.A., Southworth,
G.R., Louis, V.L.S., Tate, M.T., 2007. Whole-ecosystem study shows rapid fishmercury
response to changes in mercury deposition. Proceedings of the National
Academy of Sciences of the United States of America 104, 16586-16591.
Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Lojen, S., Jacimovic, R.,
69
Falnoga, I., Liya, Q., Faganeli, J., Drobne, D., 2003. Total mercury, methylmercury
and selenium in mercury polluted areas in the province Guizhou, China. Science of
The Total Environment 304, 231-256.
Hu, Z.-Y., Zhu, Y.-G., Li, M., Zhang, L.-G., Cao, Z.-H., Smith, F.A., 2007. Sulfur
(S)-induced enhancement of iron plaque formation in the rhizosphere reduces
arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution
147, 387-393.
Jensen, S., JernelÖV, A., 1969. Biological Methylation of Mercury in Aquatic
Organisms. Nature 223, 753-754.
Kim, K.-H., Kabir, E., Jahan, S.A., 2016. A review on the distribution of Hg in the
environment and its human health impacts. Journal of hazardous materials 306,
376-385.
Kirby, A., Rucevska., I., YemelinV., C.C., Simonett., O., 2013. Mercury–Time to
Act, United Nations Environment Program.
Kuang, J.-L., Huang, L.-N., Chen, L.-X., Hua, Z.-S., Li, S.-J., Hu, M., Li, J.-T., Shu,
W.-S., 2013. Contemporary environmental variation determines microbial diversity
patterns in acid mine drainage. The ISME Journal 7, 1038-1050.
Lasorsa, B., Casas, A., 1996. A comparison of sample handling and analytical
methods for determination of acid volatile sulfides in sediment. Marine Chemistry
52, 211-220.
Lauber, C., Hamady, M., Knight, R., Fierer, N., 2009. Pyrosequencing-Based
Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the
Continental Scale. Applied and environmental microbiology 75, 5111-5120.
Lehnherr, I., 2014. Methylmercury biogeochemistry: a review with special
reference to Arctic aquatic ecosystems. Environmental Reviews 22, 229-243.
Lewis, A., Huntington, T., Marvin-DiPasquale, M., Amirbahman, A., 2016. Mercury
70
remediation in wetland sediment using zero-valent iron and granular activated
carbon. Environmental Pollution 212, 366-373.
Li, P., Feng, X., Qiu, G., Shang, L., Wang, S., 2008. Mercury exposure in the
population from Wuchuan mercury mining area, Guizhou, China. The Science of
the total environment 395, 72-79.
Liesack, W., Schnell, S., Revsbech, N.P., 2000. Microbiology of flooded rice
paddies. FEMS Microbiol Rev 24, 625-645.
Liu, J., Valsaraj, K., Delaune, R., 2009. Inhibition of Mercury Methylation by Iron
Sulfides in an Anoxic Sediment. Environmental Engineering Science - ENVIRON
ENG SCI 26, 833-840.
Liu, X., Ma, A., Zhuang, G., Zhuang, X., 2018. Diversity of microbial communities
potentially involved in mercury methylation in rice paddies surrounding typical
mercury mining areas in China. MicrobiologyOpen 7, e00577.
Liu, Y.-R., Yu, R.-Q., Zheng, Y.-M., He, J.-Z., 2014. Analysis of the Microbial
Community Structure by Monitoring an Hg Methylation Gene (<em>hgcA</em>)
in Paddy Soils along an Hg Gradient. Applied and environmental microbiology 80,
2874-2879.
Lovley, D.R., Stolz, J.F., Nord, G.L., Phillips, E.J.P., 1987. Anaerobic production of
magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252-254.
Meng, B., Feng, X., Qiu, G., Anderson, C.W.N., Wang, J., Zhao, L., 2014.
Localization and Speciation of Mercury in Brown Rice with Implications for Pan-
Asian Public Health. Environmental science & technology 48, 7974-7981.
Meng, B., Feng, X., Qiu, G., Liang, P., Li, P., Chen, C., Shang, L., 2011. The
Process of Methylmercury Accumulation in Rice (Oryza sativa L.). Environmental
science & technology 45, 2711-2717.
Miskimmin, B.M., 1991. EFFECT OF NATURAL LEVELS OF DISSOLVED
71
ORGANIC-CARBON (DOC) ON METHYL MERCURY FORMATION AND
SEDIMENT WATER PARTITIONING. Bulletin of Environmental Contamination
and Toxicology 47, 743-750.
Miskimmin, B.M., Rudd, J.W.M., Kelly, C.A., 1992. INFLUENCE OF
DISSOLVED ORGANIC-CARBON, PH, AND MICROBIAL RESPIRATION
RATES ON MERCURY METHYLATION AND DEMETHYLATION IN LAKE
WATER. Canadian Journal of Fisheries and Aquatic Sciences 49, 17-22.
Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris,
R., Horvat, M., Lucotte, M., Malm, O., 2007. Recovery of mercury-contaminated
fisheries. Ambio 36, 33-44.
Nicol, G., Leininger, S., Schleper, C., Prosser, J., 2008. The Influence of Soil pH on
the Diversity, Abundance and Transcriptional Activity of Ammonia Oxidizing
Archaea and Bacteria. Environmental microbiology 10, 2966-2978.
Padmavathiamma, P., Li, L., 2007. Phytoremediation Technology: Hyper-
Accumulation Metals in Plants. Water, Air, and Soil Pollution 184, 105-126.
Parker, C.W., Auler, A.S., Barton, M.D., Sasowsky, I.D., Senko, J.M., Barton, H.A.,
2018. Fe(III) Reducing Microorganisms from Iron Ore Caves Demonstrate
Fermentative Fe(III) Reduction and Promote Cave Formation. Geomicrobiology
Journal 35, 311-322.
Parks, J.M., Johs, A., Podar, M., Bridou, R., Hurt, R.A., Jr., Smith, S.D., Tomanicek,
S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D.,
Elias, D.A., Liang, L., 2013. The genetic basis for bacterial mercury methylation.
Science 339, 1332-1335.
Podar, M., Gilmour, C.C., Brandt, C.C., Soren, A., Brown, S.D., Crable, B.R.,
Palumbo, A.V., Somenahally, A.C., Elias, D.A., 2015. Global prevalence and
distribution of genes and microorganisms involved in mercury methylation. Science
72
Advances 1, e1500675.
Randall, P., Chattopadhyay, S., 2004. Advances in encapsulation technologies for
the management of mercury-contaminated hazardous wastes. Journal of hazardous
materials 114, 211-223.
Richter, R., Flachberger, H., 2010. Soil Washing and Thermal Desorption: Reliable
Techniques for Remediating Materials Contaminated with Mercury. BHM Berg-
Und Hüttenmännische Monatshefte 155, 571-577.
Rodríguez, O., Padilla, I., Tayibi, H., López-Delgado, A., 2012. Concerns on liquid
mercury and mercury-containing wastes: A review of the treatment technologies for
the safe storage. Journal of Environmental Management 101, 197-205.
Rothenberg, S., Anders, M., Ajami, N.J., Petrosino, J., Balogh, E., 2016. Water
management impacts rice methylmercury and the soil microbiome. Science of The
Total Environment 572.
Rothenberg, S.E., Windham-Myers, L., Creswell, J.E., 2014. Rice methylmercury
exposure and mitigation: A comprehensive review. Environmental Research 133,
407-423.
Schaefer, J.K., Kronberg, R.-M., Morel, F.M.M., Skyllberg, U., 2014. Detection of a
key Hg methylation gene, hgcA, in wetland soils. Environmental Microbiology
Reports 6, 441-447.
Senn, D.B., Hemond, H.F., 2002. Nitrate Controls on Iron and Arsenic in an Urban
Lake. Science 296, 2373-2376.
Spry, D.J., Wiener, J.G., 1991. METAL BIOAVAILABILITY AND TOXICITY TO
FISH IN LOW-ALKALINITY LAKES - A CRITICAL-REVIEW. Environmental
Pollution 71, 243-304.
Stein, E.D., Cohen, Y., Winer, A.M., 1996. Environmental distribution and
transformation of mercury compounds. Critical Reviews in Environmental Science
73
and Technology 26, 1-43.
Stlouis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Bloom, N.S., Flett, R.J.,
1994. IMPORTANCE OF WETLANDS AS SOURCES OF METHYL MERCURY
TO BOREAL FOREST ECOSYSTEMS. Canadian Journal of Fisheries and Aquatic
Sciences 51, 1065-1076.
Su, Y.-B., Chang, W.-C., Hsi, H.-C., Lin, C.-C., 2016. Investigation of
biogeochemical controls on the formation, uptake and accumulation of
methylmercury in rice paddies in the vicinity of a coal-fired power plant and a
municipal solid waste incinerator in Taiwan. Chemosphere 154, 375-384.
Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin,
M., 2011. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through
Phytoremediation. International Journal of Chemical Engineering 2011, 31.
Ulrich, P., Sedlak, D., 2010. Impact of Iron Amendment on Net Methylmercury
Export from Tidal Wetland Microcosms. Environmental science & technology 44,
7659-7665.
Wang, X., Hu, M., Xia, Y., Wen, X., Ding, K., 2012. Pyrosequencing Analysis of
Bacterial Diversity in 14 Wastewater Treatment Systems in China. Applied and
environmental microbiology 78, 7042-7047.
Wang, Y.-j., Dang, F., Zhao, J.-t., Zhong, H., 2016. Selenium inhibits sulfatemediated
methylmercury production in rice paddy soil. Environmental Pollution
213, 232-239.
Wegner, C.-E., Liesack, W., 2015. Microbial community dynamics during the early
stages of plant polymer breakdown in paddy soil: Metatranscriptomics of rice straw
decomposition. Environmental microbiology 18.
Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., Yee, N., 2009.
Reduction of Hg(II) to Hg(O) by Magnetite. Environmental science & technology
74
43, 5307-5313.
Wiener, J.G., Knights, B.C., Sandheinrich, M.B., Jeremiason, J.D., Brigham, M.E.,
Engstrom, D.R., Woodruff, L.G., Cannon, W.F., Balogh, S.J., 2006. Mercury in
Soils, Lakes, and Fish in Voyageurs National Park (Minnesota): Importance of
Atmospheric Deposition and Ecosystem Factors. Environmental science &
technology 40, 6261-6268.
Winfrey, M.R., Rudd, J.W.M., 1990. Environmental factors affecting the formation
of methylmercury in low pH lakes. Environmental Toxicology and Chemistry 9,
853-869.
Xu, J., Bravo, A.G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., Kumpiene, J., 2015.
Sources and remediation techniques for mercury contaminated soil. Environment
international 74, 42-53.
Yin, D., Wang, X., Peng, B., Tan, C., Ma, L.Q., 2017. Effect of biochar and Febiochar
on Cd and As mobility and transfer in soil-rice system. Chemosphere 186,
928-937.
Yin, Y., Allen, H.E., Li, Y., Huang, C.P., Sanders, P.F., 1996. Adsorption of
Mercury(II) by Soil: Effects of pH, Chloride, and Organic Matter. Journal of
Environmental Quality 25, 837-844.
Yu, R.Q., Reinfelder, J.R., Hines, M.E., Barkay, T., 2013. Mercury Methylation by
the Methanogen Methanospirillum hungatei. Applied and environmental
microbiology 79, 6325-6330.
Yunyun, l., Zhao, J., Zhang, B., Liu, Y., Xu, X., Li, Y.-F., Li, B., Gao, Y., Chai, Z.,
2015. The influence of iron plaque on the absorption, translocation and
transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different
mercury species. Plant and Soil 398.
Zhang, C., Ge, Y., Yao, H., Chen, X., Hu, M., 2012. Iron oxidation-reduction and its
75
impacts on cadmium bioavailability in paddy soils: a review. Frontiers of
Environmental Science & Engineering 6, 509-517.
Zhang, H., Feng, X., Larssen, T., Qiu, G., Vogt, R.D., 2010a. In inland China, rice,
rather than fish, is the major pathway for methylmercury exposure. Environmental
health perspectives 118, 1183-1188.
Zhang, H., Feng, X., Larssen, T., Shang, L., Li, P., 2010b. Bioaccumulation of
Methylmercury versus Inorganic Mercury in Rice (Oryza sativa L.) Grain.
Environmental science & technology 44, 4499-4504.
Zhong, S., Qiu, G., Feng, X., Lin, C., Bishop, K., 2017. Sulfur and iron influence
the transformation and accumulation of mercury and methylmercury in the soil-rice
system. Journal of Soils and Sediments.
簡道南, 2006. 土壤中的放線菌 、真菌與藻類 台肥季刊 第四七卷第一期.
指導教授 林居慶 審核日期 2019-12-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明