博碩士論文 106326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.116.40.177
姓名 徐佩瑄(Pei-Hsuan Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用加速碳酸鹽反應技術評估灰渣類廢棄物捕捉二氧化碳之可行性研究
(Accelerated Carbonation effects on Carbon Dioxide Capture by Alkaline Solid Residues)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-17以後開放)
摘要(中) 本研究嘗試分別利用焚化底渣(以下簡稱底渣)與電弧爐還原碴(以下簡稱還原碴),在控制液固比及模擬焚化爐煙道氣排氣濃度等條件下,探討前述底渣或還原碴捕捉二氧化碳之可行性。實驗控制條件分別包括液固比(0.2-0.4),模擬煙道氣10%二氧化碳及15 ppm二氧化硫。研究過程除評估前述底渣及還原碴對二氧化碳捕捉效果外,亦期進一步探討二氧化硫對加速碳酸鹽反應捕捉二氧化碳之競爭影響。
研究結果顯示,底渣與還原碴均屬於高鈣含量的灰渣類廢棄物,且經過加速碳酸鹽反應,並控制液固比條件為0.2時,底渣及還原碴捕捉二氧化碳之效果,分別為42.5 g/kg及69.1 g/kg,此係還原碴具有較高之比表面積與孔隙率,故有較佳之二氧化碳捕捉效果。當液固比增加至0.3時,底渣及還原碴對二氧化碳的捕捉量,分別增加至78.3 g/kg及82.7 g/kg,可見控制適當液固比條件,有助於加速碳酸鹽之反應,提升二氧化碳之捕捉效果。然而,當液固比增加至0.4時,底渣及還原碴對二氧化碳的捕捉量,則分別降低至41.1 g/kg及63.2 g/kg。此係液固比過高,水分佔據灰渣及還原碴的孔隙,造成二氧化碳擴散率降低,導致二氧化碳不易與灰渣及還原碴的含鈣物質接觸與反應,二氧化碳之捕捉效果明顯降低。此外,以液固比控制0.3時,二氧化碳捕捉率最佳之狀況下,煙道氣中含有15 ppm之二氧化硫,由於二氧化硫將與二氧化碳共同競爭鈣離子,導致底渣及還原碴對二氧化碳之捕捉量,明顯降低至54.7 g/kg及77.1 g/kg。
加速碳酸鹽反應後底渣及還原碴之重金屬穩定化分析結果顯示,底渣經加速碳酸鹽反應前後之鎘(Cd)、鉛(Pb)、硒(Se)、砷(As)、汞(Hg)及六價鉻(Cr6+),皆低於儀器偵測濃度,而總鉻(Cr)溶出濃度則由初始0.33 mg/L降低至低於儀器檢測濃度。還原碴反應前後之銅(Cu)、鋅(Zn)、鉻(Cr)、鎘(Cd)、鉛(Pb)、硒(Se)、砷(As)及汞(Hg),皆低於儀器偵測濃度,至於六價鉻(Cr6+)溶出濃度,則由初始之0.06±0.02 mg/L降低至低於儀器檢測濃度。整體而言,底渣與還原碴經加速碳酸鹽反應後,不僅具有二氧化碳捕捉之效果,同時有助於達成灰渣及還原碴之重金屬穩定化及無害化之目的。
摘要(英) This research investigated that the feasibility of carbon dioxide capture by municipal solid waste incinerator (MSWI) bottom ash and electric arc furnace (EAF) reductive slag using the accelerated carbonation system combined with semi-dry rotary kiln. The experiments were conducted by controlling liquid-solid ratio (ranged from 0.2 to 0.4), 10% carbon dioxide concentration and 15 ppm sulfur dioxide concentration.
The experimental results showed that MSWI bottom ash and EAF reductive slag were alkaline solid residues containing high calcium content. In the case of liquid-to-solid ratio 0.2, the carbon dioxide captured by bottom ash and reductive slag were 42.5 g/kg and 69.1 g/kg, respectively. When the liquid-solid ratio was increased to 0.3, the carbon dioxide captured by bottom ash and reductive slag were significantly increased to 78.3 g/kg and 82.7 g/kg, respectively. Consequently, controlling the appropriate liquid-solid ratio could exhibit a good CO2 capture performance. However, in the case of liquid-solid ratio 0.4, the carbon dioxide captured by bottom ash and reductive slag were slightly decreased to 41.1 g/kg and 63.2 g/kg, respectively. This is because the higher moisture content of ash could tend to block the pores of alkaline residues, hence, it will be resulted in a decrease in carbon dioxide diffusion. On the other hand, due to the reductive slag had a higher specific surface area than that of bottom ash, it can provide the higher porosity and perform a good potential for carbon dioxide diffusion. Therefore, reductive slag exhibited a good carbon dioxide capture efficiency than that of bottom ash.
With sulfur dioxide (SO2) addition, a competitive reaction between calcium ion and sulfur ion could occur during accelerated carbonation process. It implied that carbon dioxide capture efficiency could decreased with an increase in SO2 concentration. In the case of liquid-to-solid ratio 0.3, the carbon dioxide was captured by bottom ash and reductive slag were decreased from 78.3g/kg to 54.7 g/kg, and from 82.7 g/kg to 77.1 g/kg with SO2 concentration increased from 0 ppm to 15 ppm, respectively.
Based on the analysis results of heavy metals stabilization in carbonated residues, all the tested heavy metals from carbonated bottom ash and reductive slag were in compliance with current Taiwan EPA regulation thresholds. In case of bottom ash after accelerated carbonation reaction, the Cr concentration was significantly decreased from 0.33 mg/L to the analytical detection limit. Meanwhile, in case of reductive slag, the Cr6+ concentration was also significantly decreased from 0.06±0.02 mg/L to the analytical detection limit after accelerated carbonation reaction. It could conclude that the accelerated carbonation has a good potential for enhancing the Cr and Cr6+ stabilization in bottom ash and reductive slag.In summary, this research has been successfully developed and proven the performances of accelerated carbonation reaction system combined with semi-dry rotary kiln. The multiple purposes of resources reduction, harmless of alkaline solid residues, and carbon dioxide sequestration by accelerated carbonation have been conducted in this research.
關鍵字(中) ★ 焚化底渣
★ 電弧爐還原碴
★ 加速碳酸鹽反應
★ CO2捕捉
★ 重金屬
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 研究緣起與目的 1
第二章 文獻回顧 5
2-1 灰渣類廢棄物資源再利用 5
2-2 碳酸鹽礦化反應途徑與機制 12
2-2-1 自然碳酸鹽礦化 13
2-2-2 加速碳酸鹽礦化 15
2-3 影響碳酸鹽礦化反應之參數 18
2-3-1材料性質 18
2-3-2二氧化碳濃度 21
2-3-3 溫度與液固比 23
2-3-4 二氧化硫競爭作用 25
2-4 碳酸鹽礦化之重金屬穩定化 28
第三章 研究材料與方法 33
3-1實驗材料 33
3-2實驗設備與儀器 34
3-2-1 加速碳酸鹽礦化反應設備 34
3-2-2 加速碳酸鹽礦化反應條件 35
3-3 實驗方法 38
3-3-1 分析方法 39
3-3-2 實驗儀器 45
第四章 結果與討論 49
4-1 研究材料基本性質分析 49
4-2 碳酸鹽礦化後性質分析結果 58
4-2-1碳酸鹽礦化後pH值變化 58
4-2-2碳酸鹽礦化後氯離子與硫酸根離子變化 60
4-2-3碳酸鹽礦化後物種鑑定與表面微觀結構變化 64
4-3 碳酸鹽礦化的二氧化碳評估結果 72
4-3-1 理論捕捉量與實際捕捉量結果 72
4-3-2 氧化鈣轉化率與二氧化碳捕捉效率結果 79
4-3-3碳酸鹽礦化反應速率與反應指標結果 82
4-4 碳酸鹽礦化後底渣與還原碴之重金屬穩定化結果 85
第五章 結論與建議 99
5-1 結論 99
5-2 建議 101
參考文獻 Ai, H., Clavier, K.A., Watts, B.E., Gale, S.A., Townsend, T.G., 2019. The efficacy of pH-dependent leaching tests to provide a reasonable estimate of post-carbonation leaching. Journal of hazardous materials 373, 204-211.
Alba, N., Vazquez, E., Gasso, S., Baldasano, J.M., 2001. Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Management 21, 313-323.
Álvarez Rodríguez, R., Clemente Jul, C., 2008. Hot gas desulphurisation with dolomite sorbent in coal gasification. Fuel 87, 3513-3521.
Asokan, P., Saxena, M., Asolekar, S.R., 2005. Coal combustion residues environmental implications and recycling potentials. Resources, Conservation and recycling 43, 239-262.
Auroy, M., Poyet, S., Le Bescop, P., Torrenti, J.M., Charpentier, T., Moskura, M., Bourbon, X., 2018. Comparison between natural and accelerated carbonation (3%CO2): Impact on mineralogy, microstructure, water retention and cracking. Cement and Concrete Research 109, 64-80.
Baciocchi, R., Costa, G., Di Gianfilippo, M., Polettini, A., Pomi, R., Stramazzo, A., 2015. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. Journal of hazardous materials 283, 302-313.
Baciocchi, R., Costa, G., Lategano, E., Marini, C., Polettini, A., Pomi, R., Postorino, P., Rocca, S., 2010. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management 30, 1310-1317.
Back, M., Bauer, M., Stanjek, H., Peiffer, S., 2011. Sequestration of CO2 after reaction with alkaline earth metal oxides CaO and MgO. Applied Geochemistry 26, 1097-1107.
Baláž, P., Turianicová, E., Fabián, M., Kleiv, R.A., Briančin, J., Obut, A., 2008. Structural changes in olivine (Mg, Fe)2SiO4 mechanically activated in high-energy mills. International Journal of Mineral Processing 88, 1-6.
Bauer, M., Gassen, N., Stanjek, H., Peiffer, S., 2011. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Applied Geochemistry 26, 1502-1512.
Bertolini, L., Carsana, M., Cassago, D., Curzio, A.Q., Collepardi, M., 2004. MSWI ashes as mineral additions in concrete. Cement and concrete research 34, 1899-1906.
Bertos, M.F., Simons, S., Hills, C., Carey, P., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of hazardous materials 112, 193-205.
Biswal, B.K., Chen, Z., Yang, E.H., 2019. Hydrothermal process reduced Pseudomonas aeruginosa PAO1-driven bioleaching of heavy metals in a novel aerated concrete synthesized using municipal solid waste incineration bottom ash. Chemical Engineering Journal 360, 1082-1091.
Bobicki, E.R., Liu, Q., Xu, Z., Zeng, H., 2012. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science 38, 302-320.
Bodor, M., Santos, R.M., Cristea, G., Salman, M., Cizer, Ö., Iacobescu, R.I., Chiang, Y.W., van Balen, K., Vlad, M., van Gerven, T., 2016. Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cement and Concrete Composites 65, 55-66.
Bouamrane, A., ELOuazzani, D.C., Barna, L.T., Mansouri, K., 2014. Valorisation des boues de papeterie comme matières premières secondaires dans les mortiers de ciment Portland: incidence des conditions d’incinération sur la résistance mécanique des mortiers (Valorization of paper mill sludge as a partial replacement of Portland cement in mortar: the impact of incineration conditions on the strength of mortars).
Brück, F., Schnabel, K., Mansfeldt, T., Weigand, H., 2018. Accelerated carbonation of waste incinerator bottom ash in a rotating drum batch reactor. Journal of Environmental Chemical Engineering 6, 5259-5268.
Branca, T.A., Pistocchi, C., Colla, V., Ragaglini, G., Amato, A., Tozzini, C., Mudersbach, D., Morillon, A., Rex, M., Romaniello, L., 2014. Investigation of (BOF) Converter slag use for agriculture in europe. Revue de Métallurgie–International Journal of Metallurgy 111, 155-167.
Chang, E.E., Chen, T.L., Pan, S.Y., Chen, Y.H., Chiang, P.C., 2013. Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. Journal of hazardous materials 260, 937-946.
Chang, E.E., Pan, S.Y., Chen, Y.H., Chu, H.W., Wang, C.F., Chiang, P.C., 2011. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195, 107-114.
Chen, K.W., Pan, S.Y., Chen, C.T., Chen, Y.H., Chiang, P.C., 2016. High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement. Journal of cleaner production 124, 350-360.
Chimenos, J., Fernandez, A., Nadal, R., Espiell, F., 2000. Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials 79, 287-299.
Colangelo, F., Messina, F., Cioffi, R., 2015. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. Journal of hazardous materials 299, 181-191.
Cui, H., Tang, W., Liu, W., Dong, Z., Xing, F., 2015. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Construction and Building Materials 93, 522-527.
Ćwik, A., Casanova, I., Rausis, K., Koukouzas, N., Zarębska, K., 2018. Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. Journal of Cleaner Production 202, 1026-1034.
Dal Pozzo, A., Guglielmi, D., Antonioni, G., Tugnoli, A., 2018. Environmental and economic performance assessment of alternative acid gas removal technologies for waste-to-energy plants. Sustainable Production and Consumption 16, 202-215.
Das, B., Prakash, S., Reddy, P., Misra, V., 2007. An overview of utilization of slag and sludge from steel industries. Resources, conservation and recycling 50, 40-57.
Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffé, B., Guyot, F., 2009. Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chemical Geology 265, 63-78.
Dijkstra, J.J., Van der Sloot, H.A., Comans, R.N., 2006. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied geochemistry 21, 335-351.
Dou, X., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., Chang, V.W.C., 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews 79, 24-38.
Dri, M., Sanna, A., Maroto Valer, M.M., 2014. Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Applied Energy 113, 515-523.
Feng, C., Dou, Y., Li, D., 2011. Steel slag used as admixture in composite cement. Journal of Nanjing University of Technology(Natural Science Edition) 33, 74-79.
Fernández Bertos, M., Simons, S.J.R., Hills, C.D., Carey, P.J., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials 112, 193-205.
Fisher, L.V., Barron, A.R., 2019. The recycling and reuse of steelmaking slags—A review. Resources, Conservation and Recycling 146, 244-255.
Freyssinet, P., Piantone, P., Azaroual, M., Itard, Y., Clozel Leloup, B., Guyonnet, D., Baubron, J.C., 2002. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Management 22, 159-172.
Geng, J., Easterbrook, D., Liu, Q.F., Li, L.Y., 2016. Effect of carbonation on release of bound chlorides in chloride-contaminated concrete. Magazine of Concrete Research 68, 353-363.
Heidrich, C., Feuerborn, H.J., Weir, A., 2013. Coal combustion products: a global perspective, World of Coal Ash Conference, pp. 22-25.
Huijgen, W.J., Witkamp, G.J., Comans, R.N., 2005. Mineral CO2 sequestration by steel slag carbonation. Environmental science & technology 39, 9676-9682.
Huijgen, W.J., Witkamp, G.J., Comans, R.N., 2006. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science 61, 4242-4251.
Huijgen, W.J.J., Comans, R.N.J., 2005. Mineral CO2 Sequestration by Steel Slag Carbonation. Environmental Science & Technology 39, 9676-9682.
Huijgen, W.J.J., Comans, R.N.J., 2006. Carbonation of Steel Slag for CO2 Sequestration:  Leaching of Products and Reaction Mechanisms. Environmental Science & Technology 40, 2790-2796.
Huntzinger, D.N., Gierke, J.S., Sutter, L.L., Kawatra, S.K., Eisele, T.C., 2009. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. Journal of Hazardous Materials 168, 31-37.
Hussain, S., Bhunia, D., Singh, S.B., 2017. Comparative study of accelerated carbonation of plain cement and fly-ash concrete. Journal of Building Engineering 10, 26-31.
Hyks, J., Astrup, T., 2009. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: A full-scale study. Chemosphere 76, 1178-1184.
Hyks, J., Astrup, T., Christensen, T.H., 2009. Leaching from MSWI bottom ash: evaluation of non-equilibrium in column percolation experiments. Waste Management 29, 522-529.
Ito, R., Dodbiba, G., Fujita, T., Ahn, J.W., 2008. Removal of insoluble chloride from bottom ash for recycling. Waste Manag 28, 1317-1323.
Ji, L., Yu, H., Zhang, R., French, D., Grigore, M., Yu, B., Wang, X., Yu, J., Zhao, S., 2019. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Processing Technology 188, 79-88.
Jiang, J., Tian, S., Zhang, C., 2013. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash. Journal of Environmental Sciences 25, 735-740.
Jiao, F., Zhang, L., Dong, Z., Namioka, T., Yamada, N., Ninomiya, Y., 2016. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Processing Technology 152, 108-115.
Johnson, D.C., MacLeod, C.L., Carey, P.J., Hills, C.D., 2003. Solidification of stainless steel slag by accelerated carbonation. Environmental technology 24, 671-678.
Karthikeyan, K., Balasubramanian, S., 2010. Studies on the characterization and possibilities of reutilization of solid wastes from a waste paper based paper industry. Global Journal of Environmental Research 4, 18-22.
Komonweeraket, K., Cetin, B., Aydilek, A.H., Benson, C.H., Edil, T.B., 2015. Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel 140, 788-802.
Krevor, S.C.M., Lackner, K.S., 2011. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control 5, 1073-1080.
Le, N.H., Abriak, N.E., Binetruy, C., Benzerzour, M., Nguyen, S.T., 2017. Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests. Waste Manag 65, 37-46.
Li, X.D., Poon, C.S., Sun, H., Lo, I.M.C., Kirk, D.W., 2001. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials 82, 215-230.
Liang, X., Ye, Z., Chang, J., 2012. Early hydration activity of composite with carbonated steel slag. Journal of The Chinese Ceramic Society 40, 226-233.
Lin, W.Y., Heng, K.S., Sun, X., Wang, J.Y., 2015a. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash. Waste Manag 43, 264-272.
Lin, W.Y., Heng, K.S., Sun, X., Wang, J.Y., 2015b. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Management 41, 75-84.
Liu, W., Li, Y.Q., Tang, L.P., Dong, Z.J., 2019. XRD and 29Si MAS NMR study on carbonated cement paste under accelerated carbonation using different concentration of CO2. Materials Today Communications 19, 464-470.
Loginova, E., Proskurnin, M., Brouwers, H.J.H., 2019a. Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. Journal of environmental management 235, 480-488.
Loginova, E., Volkov, D.S., van de Wouw, P.M.F., Florea, M.V.A., Brouwers, H.J.H., 2019b. Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. Journal of cleaner production 207, 866-874.
Luo, H., Cheng, Y., He, D., Yang, E.H., 2019. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of The Total Environment 668, 90-103.
Lynn, C.J., Ghataora, G.S., Dhir, R.K., 2016. Environmental impacts of MIBA in geotechnics and road applications. Environmental Geotechnics 5, 31-55.
Mackie, A.L., Walsh, M.E., 2012. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water research 46, 327-334.
Mangialardi, T., 2004. Effects of a washing pre-treatment of municipal solid waste incineration fly ash on the hydration behaviour and properties of ash—Portland cement mixtures. Advances in cement research 16, 45-54.
Mo, L., Zhang, F., Deng, M., 2016. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cement and Concrete Research 88, 217-226.
Motz, H., Geiseler, J., 2001. Products of steel slags an opportunity to save natural resources. Waste management 21, 285-293.
Nedeljković, M., Šavija, B., Zuo, Y., Luković, M., Ye, G., 2018. Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes. Construction and Building Materials 161, 687-704.
Neves, R., Branco, F., De Brito, J., 2013. Field assessment of the relationship between natural and accelerated concrete carbonation resistance. Cement and Concrete Composites 41, 9-15.
Nilsson, M., Andreas, L., Lagerkvist, A., 2016. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash. Waste Manag 51, 97-104.
Nishida, K., Nagayoshi, Y., Ota, H., Nagasawa, H., 2001. Melting and stone production using MSW incinerated ash. Waste Management 21, 443-449.
Nyambura, M.G., Mugera, G.W., Felicia, P.L., Gathura, N.P., 2011. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. Journal of environmental management 92, 655-664.
Olsson, S., van Schaik, J.W.J., Gustafsson, J.P., Kleja, D.B., van Hees, P.A.W., 2007. Copper(II) Binding to Dissolved Organic Matter Fractions in Municipal Solid Waste Incinerator Bottom Ash Leachate. Environmental Science & Technology 41, 4286-4291.
Pan, S.Y., Chang, E.E., Kim, H., Chen, Y.H., Chiang, P.C., 2016a. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications. J Hazard Mater 307, 253-262.
Pan, S.Y., Adhikari, R., Chen, Y.H., Li, P., Chiang, P.C., 2016b. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. Journal of Cleaner Production 137, 617-631.
Pan, S.Y., Chang, E.E., Chiang, P.C., 2012. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research 12, 770-791.
Pan, S.Y., Chiang, P.C., Chen, Y.H., Chen, C.D., Lin, H.Y., Chang, E.E., 2013. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environmental science & technology 47, 13677-13685.
Polettini, A., Pomi, R., Stramazzo, A., 2016. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J Environ Manage 167, 185-195.
Portillo, H., Zuluaga, M.C., Ortega, L.A., Alonso-Olazabal, A., Murelaga, X., Martinez Salcedo, A., 2018. XRD, SEM/EDX and micro-Raman spectroscopy for mineralogical and chemical characterization of iron slags from the Roman archaeological site of Forua (Biscay, North Spain). Microchemical Journal 138, 246-254.
Predeanu, G., Popescu, L.G., Abagiu, T.A., Panaitescu, C., Valentim, B., Guedes, A., 2016. Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methods. International Journal of Coal Geology 168, 131-145.
Quina, M.J., Bordado, J.C., Quinta Ferreira, R.M., 2009. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management 29, 2483-2493.
Radosavljevic, S., Milic, D., Gavrilovski, M., 1996. Mineral processing of a converter slag and its use in iron ore sintering. Physical Separation in Science and Engineering 7, 201-211.
Rendek, E., Ducom, G., Germain, P., 2006. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. Journal of hazardous materials 128, 73-79.
Rolfe, A., Huang, Y., Haaf, M., Rezvani, S., Dave, A., Hewitt, N., 2017. Techno-economic and Environmental Analysis of Calcium Carbonate Looping for CO2 Capture from a Pulverised Coal-Fired Power Plant. Energy Procedia 142, 3447-3453.
Rushendra Revathy, T.D., Palanivelu, K., Ramachandran, A., 2016. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ Sci Pollut Res Int 23, 7349-7359.
Salem, W.M., Sayed, W.F., Halawy, S.A., Elamary, R.B., 2015. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in wastewater treatment. Ecotoxicology and environmental safety 119, 155-161.
Salman, M., Cizer, Ö., Pontikes, Y., Santos, R.M., Snellings, R., Vandewalle, L., Blanpain, B., Van Balen, K., 2014. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal 246, 39-52.
Santamaria, A., Faleschini, F., Giacomello, G., Brunelli, K., San José, J.T., Pellegrino, C., Pasetto, M., 2018. Dimensional stability of electric arc furnace slag in civil engineering applications. Journal of Cleaner Production 205, 599-609.
Santamaría, A., Orbe, A., Losañez, M., Skaf, M., Ortega Lopez, V., González, J.J., 2017. Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate. Materials & Design 115, 179-193.
Santos, R.M., François, D., Mertens, G., Elsen, J., Van Gerven, T., 2013a. Ultrasound-intensified mineral carbonation. Applied Thermal Engineering 57, 154-163.
Santos, R.M., Mertens, G., Salman, M., Cizer, Ö., Van Gerven, T., 2013b. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Journal of Environmental Management 128, 807-821.
Saveyn, H., Eder, P., Garbarino, E., Muchova, L., Hjelmar, O., Van der Sloot, H., Comans, R., Van Zomeren, A., Hyks, J., Oberender, A., 2014. Study on methodological aspects regarding limit values for pollutants in aggregates in the context of the possible development of end-of-waste criteria under the EU Waste Framework Directive. Institute for Prospective Technological Studies: Seville, Spain.
Schmidt, U., 2003. Enhancing phytoextraction. Journal of Environmental Quality 32, 1939-1954.
Shtepenko, O., Hills, C., Brough, A., Thomas, M., 2006. The effect of carbon dioxide on β-dicalcium silicate and Portland cement. Chemical Engineering Journal 118, 107-118.
Silva, R.V., de Brito, J., Lynn, C.J., Dhir, R.K., 2019. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling 140, 23-35.
Sun, J., Bertos, M.F., Simons, S.J., 2008. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & Environmental Science 1, 370-377.
Symonds, R.T., Lu, D.Y., Hughes, R.W., Anthony, E.J., Macchi, A., 2009. CO2 capture from simulated syngas via cyclic carbonation/calcination for a naturally occurring limestone: pilot-plant testing. Industrial & Engineering Chemistry Research 48, 8431-8440.
Tamilselvi Dananjayan, R.R., Kandasamy, P., Andimuthu, R., 2016. Direct mineral carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production 112, 4173-4182.
Tempest, B.Q., Pando, M.A., 2013. Characterization and demonstration of reuse applications of sewage sludge ash. International Journal of Geomate, 552-559.
Temuujin, J., Surenjav, E., Ruescher, C.H., Vahlbruch, J., 2019. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 216, 866-882.
Tian, S., Jiang, J., 2012. Sequestration of flue gas CO2 by direct gas-solid carbonation of air pollution control system residues. Environ Sci Technol 46, 13545-13551.
Tonoli, G.H.D., Carmello, G.F., Fioroni, C.A., Pereira, T.d.L., Rocha, G., Souza, R.B.d., John, V.M., Savastano, H., 2019. Influence of the initial moisture content on the carbonation degree and performance of fiber-cement composites. Construction and Building Materials 215, 22-29.
Uibu, M., Kuusik, R., Andreas, L., Kirsimäe, K., 2011. The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia 4, 925-932.
Ukwattage, N.L., Ranjith, P.G., Li, X., 2017. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97, 15-22.
Ukwattage, N.L., Ranjith, P.G., Yellishetty, M., Bui, H.H., Xu, T., 2015. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production 103, 665-674.
Um, N., Ahn, J.W., 2017. Effects of two different accelerated carbonation processes on MSWI bottom ash. Process Safety and Environmental Protection 111, 560-568.
Van der Sloot, H.A., Dijkstra, J.J., 2004. Development of horizontally standardized leaching tests for construction materials: a material based or release based approach?: Identical leaching mechanisms for different materials. ECN.
Van Gerven, T., Van Keer, E., Arickx, S., Jaspers, M., Wauters, G., Vandecasteele, C., 2005. Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Management 25, 291-300.
Van Zomeren, A., Comans, R.N.J., 2004. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. Environmental Science and Technology 38, 3927-3932.
Vashistha, P., Kumar, V., Singh, S.K., Dutt, D., Tomar, G., Yadav, P., 2019. Valorization of paper mill lime sludge via application in building construction materials: A review. Construction and Building Materials 211, 371-382.
Wang, C., Jia, L., Tan, Y., Anthony, E., 2010. The effect of water on the sulphation of limestone. Fuel 89, 2628-2632.
Wang, J., Chang, C.J., Yang, Y.F., 2018. Strategies for Promoting Steelmaking Slag Resourcezation in Taiwan. MATEC Web of Conferences 187, 03001.
Wang, J., Xu, H., Xu, D., Du, P., Zhou, Z., Yuan, L., Cheng, X., 2019. Accelerated carbonation of hardened cement pastes: Influence of porosity. Construction and Building Materials 225, 159-169.
Yakubu, Y., Zhou, J., Ping, D., Shu, Z., Chen, Y., 2018. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash. Journal of environmental management 207, 243-248.
Yang, Z., Ji, R., Liu, L., Wang, X., Zhang, Z., 2018. Recycling of municipal solid waste incineration by-product for cement composites preparation. Construction and Building Materials 162, 794-801.
Yao, J., Li, W., Xia, F., Wang, J., Fang, C., Shen, D., 2010. Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach. Frontiers of Energy and Power Engineering in China.
Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., Chen, H., 2012. An overview of utilization of steel slag. Procedia Environmental Sciences 16, 791-801.
Yoon, I.H., Moon, D.H., Kim, K.W., Lee, K.Y., Lee, J.H., Kim, M.G., 2010. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Journal of Environmental management 91, 2322-2328.
Yoon, I.S., Çopuroğlu, O., Park, K.B., 2007. Effect of global climatic change on carbonation progress of concrete. Atmospheric environment 41, 7274-7285.
Zhang, J., Zheng, P., Wang, Q., 2015. Lime mud from papermaking process as a potential ameliorant for pollutants at ambient conditions: a review. Journal of Cleaner Production 103, 828-836.
Zhang, Y., Jiang, J., Chen, M., 2008. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences 20, 1398-1402.
Zhao, S., Chen, Z., Shen, J., Kang, J., Zhang, J., Shen, Y., 2017. Leaching mechanisms of constituents from fly ash under the influence of humic acid. Journal of hazardous materials 321, 647-660.
江康鈺、王啟宗,2008,都市垃圾焚化飛灰與淨水污泥共同燒結產物之動力及材料特性研究,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市。
江康鈺、周娉慧、簡光勵、楊叢印、陳鐿夫,2009,都市垃圾焚化底渣熟化反應提昇重金屬穩定性評估研究,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林縣。
江康鈺、黃淑貞,2008,都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性及其反應動力之研究,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市。
行政院環保署環境資源資料庫統計資料,2019年8月查詢,https://erdb.epa.gov.tw/DataRepository/Air/Incineration_Plant_Air_Pollution_Detect_Data.aspx。
吳明富,2013,還原碴-高爐石作為混合膠結材料之應用,國立中央大學土木工程學系碩士論文。
林佩瑩,2011,加速碳酸化對焚化底渣特性影響之研究,國立臺北科技大學資源工程研究所碩士論文。
林宗曾、何青薇、許孝慈、葉佳和,2012,水泥砂漿添加焚化底灰之耐久性與長期溶出性,第二十四屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市。
林健榮、黃靖云、戴年禧、張書瑋,2008,熟化程序對都市垃圾焚化底渣中重金屬穩定化之影響,第二十屆廢棄物處理技術研討會,中華民國環境工程學會,台北市。
張坤森、邱孔濱、羅文鴻、王琳瑋、林昇彥、徐誠隆,2015,我國垃圾焚化飛灰再利用之困境及去化市場分析研究,第二十七屆廢棄物處理技術研討會, 中華民國環境工程學會,桃園市。
張坤森、劉真譯、蘇薏茹、何怡慧、朱珊姍、陳冠伯,2015,兼具氯鹽最小化及無害化之 MSWI 飛灰精進處理程序研究,第二十七屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市。
張坤森、劉真驛、戴宛柔、吳慧敏、王琳瑋、徐偉軒,2014,階段性技術處理垃圾焚化飛灰作為可回收材料之可行性,第二十六屆廢棄物處理技術研討會,中華民國環境工程學會,台中市。
張坤森、蘇薏茹、邱孔濱、徐誠隆、楊之葶,2016,利於垃圾焚化飛灰再利用之精進無害化處理研究,第二十八屆廢棄物處理技術研討會,中華民國環境工程學會,台南市。
陳昭羽,2011,加速碳酸鹽反應對垃圾焚化灰渣重金屬溶出特性影響之研究,逢甲大學環境與科學學系碩士論文。
曾雅玟,2018,還原碴再利用於膠結材料及膨脹行為改善之研究,國立成功大學資源工程學系碩士論文。
詹詠翔、張祖恩、柯明賢、施百鴻、盧幸成、陳盈良,2009,碳酸化程序對轉爐石溶出特性之影響,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林縣。
詹鈞詠、柯明賢、陳昭旭、陳信榮、陳俊廷、 江志華,2009,加速碳酸化對煉鋼爐石工程特性影響之研究,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林縣。
蕭毓撰、江康鈺、張木彬、林雅停、呂承翰、郭俊鑫,2018,加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究,第三十屆廢棄物處理技術研討會,中華民國環境工程學會,台南市。
鍾岱均、蔣本基、陳劼立、潘述元、何長慶、侯智仁,2015,超重力碳酸化進行碳捕集及再利用:以電弧爐還原碴為例,第二十七屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市。
簡呈至、柯明賢,2012,焚化飛灰穩定化物再利用作為混凝土磚可行性之探討,第二十四屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市。
簡芳瑜,2016,以三相碳酸化系統探討還原碴封存二氧化碳之研究,國立中央大學環境工程研究所碩士論文。
羅煌木、陳右儒、邱薰瑩、簡鈺銘、丁哲皓、許芢賓,2011,焚化爐灰燼特性及輕質骨材之再利用研究,第二十三屆廢棄物處理技術研討會,中華民國環境工程學會,台南市。
蘇鈺荃、張祖恩、張益國、陳盈良、周鈺蓉,2011,電弧爐渣重金屬溶出行為及應用為級配粒料之評估,第二十三屆廢棄物處理技術研討會,中華民國環境工程學會,台南市。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2019-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明