博碩士論文 106326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.149.242.223
姓名 林寬昱(Kuan-Yu Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2019年鹿林山背景生質燃燒氣膠傳輸特性及其對大氣光學影響
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中南半島生質燃燒(Biomass Burning, BB)氣膠傳輸分布廣泛,對大氣環境有重大影響。本文在鹿林山背景監測站 (海拔2,862 m)分別於 2018年 10、11月(秋季)及2019年3、4月(春季)觀測BB及其他氣流來向大氣氣膠化學特性,並評估氣膠化學成分對大氣光學的影響。在正式採樣前,本文以 Z-test檢定確認非常陡峭切割旋風集塵器(Very Sharp Cut Cyclone, VSCC)與衝擊板(Impactor)採集PM2.5濃度並無顯著差異(n=36; p=0.42),但VSCC對於採集濃度的回應比 Impactor好,因此,本文使用VSCC採集的PM2.5。
2018 年秋季PM2.5 (氣動直徑小於或等於2.5 μm粒狀物)和 PM10 (氣動直徑小於或等於10 μm粒狀物)質量濃度分別為2.8 ± 1.6和4.1 ± 2.2 μg m-3,PM2.5占PM10質量濃度的0.68。秋季期間氣流傳輸來向可分為自由大氣(Free Troposphere, FT)及人為污染(Anthropogenic, AN)。FT 類型PM2.5污染來源較紛雜;AN 類型PM2.5來源推論為固定源與BB,PM2.5-10來源則主要為移動源。
2019 年春季PM1 (氣動直徑小於或等於1.0 μm粒狀物)、PM2.5、PM10質量濃度分別為12.3 ± 9.1、15.2 ± 9.9、18.9 ± 11.3 μg m-3,顯示PM1主導鹿林山氣膠質量濃度。BB傳輸期間,PM1、PM2.5、及PM10質量濃度分別高達22.0 ± 7.2、25.4 ± 7.7、30.0 ± 9.0 μg m-3,PM1/PM10為 0.73,顯然BB為春季氣膠主要污染源且由更細粒徑氣膠主導,PM1有機碳 (OC)、元素碳 (EC)、水溶性無機離子的主要成分分別為OC3、EC1-OP、SO42-,SO42-來源推論為中南半島與中國南方工業源。
為了探討氣膠的氣候效應,本文以 Revised IMPROVE模式估算PM2.5 化學成分消光係數,發現與自動儀器量測的氣膠消光係數有良好相關性 (R2 > 0.86),春季氣流(FT, AN, BB類型)和秋季氣流(FT和AN類型)都以有機物和硝酸銨為消光係數主導化學成分。此外,春季和秋季各類氣流氣膠的單一反照率都大於 0.85,顯示氣膠具有強散光特性,對於氣候暖化有減緩作用。
摘要(英) Biomass burning (BB) aerosol transported from Indochina spreads broadly
and thus influences the atmospheric environment significantly. This study
observed chemical properties of the atmospheric aerosol transported from BB
and other orientations in October and November (autumn) in 2018 and March
and April (spring) in 2019, respectively, at Mt. Lulin (2,862 m a.s.l.), and
assessed the atmospheric optical effects from the aerosol. Before aerosol
collection, this study applied a Z-test (n=36; p=0.42) to find no significant
differences for the collected PM2.5 mass concentrations betwee Very Sharp Cut
Cyclone (VSCC) and Impactor, but the concentration from VSCC responded
to PM2.5 concentration variations better than Impactor. Consequently, this study
adopted the VSCC for aerosol collection in the following PM2.5 collection.
The mass concentrations of PM2.5 (particulate matter with an aerodynamic
diameter less than or equal to 2.5 μm) and PM10 (particulate matter with an
aerodynamic diameter less than or equal to 10 μm) were 2.8 ± 1.6 and 4.1 ± 2.2
μg m-3, respectively, in autumn of 2018; with PM2.5/PM10 at 0.68. The
orientations of the transported air masses could split into Free Troposphere (FT)
and Anthropogenic (AN) types. The sources of PM2.5 from the FT type were
various. In contrast, the inferences on source contributions of PM2.5 from the AN
type were from stationary sources and BB, and PM2.5-10 was from mobile sources.
The mass concentrations of PM1 (particulate matter with an aerodynamic
diameter less than or equal to 1 μm), PM2.5, and PM10 were 12.3 ± 9.1, 15.2 ±
9.9, and 18.9 ± 11.3 μg m-3, respectively, in spring of 2019. It indicated that PM1
dominated aerosol mass concentration at Mt. Lulin. During the BB transported
period, the mass concentrations of PM1, PM2.5, and PM10 were as high as 22.0 ±
7.2, 25.4 ± 7.7, and 30.0 ± 9.0 μg m-3, respectively. The ratio of PM1/PM10 was
0.73, which demonstrated that BB was the main aerosol source and finer sizes
dominating the spring BB aerosol. The main components of PM1 organic carbon
(OC), elemental carbon (EC), and water-soluble inorganic ions were OC3, EC1-
OP, and SO4
2-, respectively. The sources inferred for SO4
2- was from Indochina
and industrial sector in southern China.
For the inference of climatic effect, this study estimated the atmospheric
extinction coefficient from PM2.5 chemical components using the Revised
IMPROVE model and compared well with that from the automated instruments
(R2
> 0.86). The dominant chemical components were organic matter and
ammonium nitrate for the atmospheric extinction coefficients in the air masses
of spring (FT, AN, and BB types) and autumn (FT and AN types). In addition,
the values of the single scattering albedo were larger than 0.85 for spring and
autumn. It showed that the atmospheric aerosol was with strong light-scattering
characteristics to mitigate climate warming.
關鍵字(中) ★ 鹿林山測站
★ 生質燃燒
★ 長程傳輸氣膠化學及光學特性
關鍵字(英) ★ Mt. Lulin station
★ Biomass burning
★ Transported aerosol chemical and optical properties
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 研究背景 3
2.1 生質燃燒說明 3
2.1.1 中南半島生質燃燒 3
2.2.2 生質燃燒特性及化學成分說明 4
2.2 氣膠碳成分說明 5
2.2.1 碳成分說明 6
2.2.3 碳成分特徵比應用 7
2.3氣膠離子成分說明 9
2.3.1 水溶性無機離子應用及特徵比說明 13
2.4 鹿林山背景測站歷年觀測說明 14
2.4.1 鹿林山長程傳輸污染類型 14
2.4.2 歷年不同來源質量濃度探討 15
2.4.3 鹿林山歷年化學成分探討 15
2.4.4 鹿林山氣膠光學特性說明 17
2.4.5 高山氣膠化學成分說明 18
2.6 高山氣膠光學說明 20
2.7 氣膠成分對於光學特性影響 21
2.7.1 質量散射效率 (Mass Scatter Efficiency, MSE) 21
2.7.2 質量吸光效率 (Mass Absorption Efficiency, MAE) 21
2.7.3 散光氣膠吸濕成長特性 22
2.8 氨根離子結合型態說明 23
2.9氣膠光學厚度說明 (Aerosol Optical Depth, AOD) 23
第三章 研究方法 25
3.1 研究流程與步驟 25
3.2 鹿林山空氣品質背景監測站 (Lulin Atmospheric Background Station, LABS) 27
3.2.1 台灣鹿林山谷風判斷方法 29
3.3 採樣觀測儀器 30
3.3.1 R&P Model 3500 自組式蜂巢式套管化學採樣器 30
3.4 採樣濾紙選擇與前處理程序 32
3.4.1 儀器與濾紙配置 32
3.4.2 濾紙前處理 35
3.4.3 樣本運送與保存 35
3.5 樣本分析方法 36
3.5.1 樣本質量濃度秤重 36
3.5.2 氣膠碳成分分析 37
3.5.3 氣膠水溶性離子分析 41
3.5.4 氣膠微粒揮發成分補賞方法 44
3.6 氣膠水溶性離子非海洋來源 47
3.7 NOAA 氣膠觀測系統 48
3.7.1 積分式散光儀 (Integrating Nephelometer) 48
3.7.2 微粒碳吸收光度計 (PSAP) 52
3.7.3 黑碳儀 56
3.8 環保署鹿林山測站其他自動觀測儀器 57
3.9 判別生質燃燒發生的方法 59
3.9.1 美國太空總署 (NASA) 自然災害網 59
3.9.2 美國太空總署全球火災監測中心 60
3.9.3 氣流軌跡模式 (NOAA HYSPLIT) 60
3.10 一次與二次有機碳的估計 61
3.11 Revised IMPROVE 公式計算消光係數 62
第四章 結果與討論 65
4.1 非常陡峭切割旋風集塵器與衝擊板採集氣膠化學成分差異 65
4.1.1 VSCC 與 Impactor 採集微粒質量濃度差異性 65
4.4.2 VSCC 與 Impactor 採集化學成分差異性 68
4.2 2018 年鹿林山秋季氣膠化學成分特性 70
4.2.1秋季氣流軌跡分類 70
4.2.2秋季氣膠特性 72
4.2.3 秋季氣流軌跡分類化學成分特性探討 76
4.2.4 秋季 FT和AN 氣流軌跡類型氣膠化學成分比較 80
4.3 2019 年鹿林山春季採樣 84
4.3.1 春季採樣氣膠特性 84
4.3.2 春季氣流軌跡分類 89
4.3.3 2019 春季三種氣流軌跡類型氣膠粒徑區間差異 92
4.3.4 BB氣流軌跡類型化學成分討論 93
4.3.5 2019 春季鹿林山 FT 與 AN氣流軌跡類型成分說明 102
4.3.6 鹿林山2019年春季BB 與 FT、AN 類型分別於 PM1、PM2.5、 112
PM2.5-10 粒徑比較 112
4.3.7 秋季與春季氣膠化學成分比較 116
4.4氣膠化學成分與大氣消光 119
4.4.1 PSAP 與 IMPROVE 模式推估吸光係數比較 119
4.4.2 IMPROVE公式計算大氣消光係數與觀測值比對 121
4.4.3 IMPROVE 公式推估大氣消光係數與氣膠化學成分 123
4.4.4 IMPROVE 公式推估大氣消光係數與氣膠質量濃度 125
4.4.5氣膠吸光與散光係數與化學成分 127
4.4.6 氣膠光學特性指標—有效碳特徵比 (Effective Carbon Ratio, ECR)和單一散射反照率 (Single Scattering Albedo, SSA) 130
4.4.7 鹿林山氣膠化學成分與 AOD相關性 132
4.4.8 黑碳與元素碳關係 135
第五章 結論與建議 139
5.1 結論 139
5.2 建議 142
參考文獻 143
附錄一 鹿林山採樣類型氣流軌跡圖 164
附錄二 鹿林山春季觀測火點圖 192
附錄三 WSIIs MDL 計算說明 194
附錄四 口試委員意見回覆 195
參考文獻 Ackerman, A.S., Toon, O.B., Taylor, J.P., Johnson, D.W., Hobbs, P.V., Ferek, R.J., 2000. Effects of aerosols on cloud albedo: Evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. Journal of the Atmospheric Sciences 57, 2684-2695.
Adachi, K., Buseck, P., 2008. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmospheric Chemistry and Physics 8, 6469-6481.
Adam, M.G., Chiang, A.W.J., Balasubramanian, R., 2020. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environmental Pollution 257, 113425.
Andreae, M.O., Gelencsér, A., 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics 6, 3131-3148.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Andrews, E., Ogren, J., Bonasoni, P., Marinoni, A., Cuevas, E., Rodríguez, S., Sun, J.Y., Jaffe, D., Fischer, E., Baltensperger, U., 2011. Climatology of aerosol radiative properties in the free troposphere. Atmospheric Research 102, 365-393.
Arnott, W.P., Hamasha, K., Moosmüller, H., Sheridan, P.J., Ogren, J.A., 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Science and Technology 39, 17-29.
Arora, P., Jain, S., 2015. Estimation of organic and elemental carbon emitted from wood burning in traditional and improved cookstoves using controlled cooking test. Environmental science & technology 49, 3958-3965.
Aurela, M., Beukes, J.P., Van Zyl, P., Vakkari, V., Teinilä, K., Saarikoski, S., Laakso, L., 2016. The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa. South African Journal of Science 112, 1-8.
Backman, J., Schmeisser, L., Virkkula, A., Ogren, J.A., Asmi, E., Starkweather, S., Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., 2017. On Aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic. Atmos. Measure. Tech 10, 5039-5062.
Bai, Z., Cui, X., Wang, X., Xie, H., Chen, B., 2018. Light absorption of black carbon is doubled at Mt. Tai and typical urban area in North China. Science of the Total Environment 635, 1144-1151.
Bano, S., Pervez, S., Chow, J.C., Matawle, J.L., Watson, J.G., Sahu, R.K., Srivastava, A., Tiwari, S., Pervez, Y.F., Deb, M.K., 2018. Coarse particle (PM10–2.5) source profiles for emissions from domestic cooking and industrial process in central India. Science of the Total Environment 627, 1137-1145.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science & Technology 30, 582-600.
Bond, T.C., Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol science and technology 40, 27-67.
Bond, T.C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D.G., Trautmann, N.M., 2007. Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Global Biogeochemical Cycles 21.
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118, 5380-5552.
Booyens, W., Van Zyl, P.G., Beukes, J.P., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Josipovic, M., Venter, A.D., Jaars, K., Laakso, L., 2015. Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa. Journal of Atmospheric Chemistry 72, 43-64.
Boreddy, S.K., Haque, M.M., Kawamura, K., 2018. Long-term (2001–2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants. Atmospheric Chemistry and Physics 18, 1291-1306.
Bozzetti, C., El Haddad, I., Salameh, D., Daellenbach, K.R., Fermo, P., Gonzalez, R., Minguillón, M.C., Iinuma, Y., Poulain, L., Müller, E., 2017. Organic aerosol source apportionment by offline-AMS over a full year in Marseille.
Cabada, J.C., Pandis, S.N., Subramanian, R., Robinson, A.L., Polidori, A., Turpin, B., 2004. Estimating the secondary organic aerosol contribution to PM2. 5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology 38, 140-155.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res 6, 106-122.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Chan, K., 2017. Aerosol optical depths and their contributing sources in Taiwan. Atmospheric environment 148, 364-375.
Chen, W., Wang, X., Cohen, J.B., Zhou, S., Zhang, Z., Chang, M., Chan, C.-Y., 2016. Properties of aerosols and formation mechanisms over southern China during the monsoon season. Atmospheric Chemistry & Physics 16.
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M., Weber, R.J., 2013. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics 13, 7765-7781.
Cheng, Y., He, K.-b., Engling, G., Weber, R., Liu, J.-m., Du, Z.-y., Dong, S.-p., 2017a. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. Science of the Total Environment 599, 1047-1055.
Cheng, Y., He, K.-B., Zheng, M., Duan, F.-K., Du, Z.-Y., Ma, Y.-L., Tan, J.-H., Yang, F.-M., Liu, J.-M., Zhang, X.-L., 2011. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics 11, 11497-11510.
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J., Zhang, R., 2015. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18, 96-104.
Cheng, Z., Ma, X., He, Y., Jiang, J., Wang, X., Wang, Y., Sheng, L., Hu, J., Yan, N., 2017b. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environmental research 156, 239-246.
Chin, M., Kahn, R., 2009. Atmospheric aerosol properties and climate impacts. US Climate Change Science Program.
Cho, C., Kim, S.-W., Lee, M., Lim, S., Fang, W., Gustafsson, Ö., Andersson, A., Park, R.J., Sheridan, P.J., 2019. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmospheric Environment 212, 65-74.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H., Magliano, K., 1996. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment 30, 2079-2112.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Chuang, M.-T., Chou, C.C.-K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric environment 78, 72-81.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Cohen, D.D., Crawford, J., Stelcer, E., Bac, V.T., 2010. Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008. Atmospheric Environment 44, 3761-3769.
Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J., Jennings, S., Moerman, M., Petzold, A., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques 3, 457-474.
Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., Fu, P., 2015. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric chemistry and physics 15, 1573-1584.
Dallmann, T.R., Onasch, T.B., Kirchstetter, T.W., Worton, D.R., Fortner, E., Herndon, S., Wood, E., Franklin, J., Worsnop, D., Goldstein, A., 2014. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics 14, 7585-7599.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y., 2004. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment 38, 3443-3452.
Day, M.C., Zhang, M., Pandis, S.N., 2015. Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment 112, 317-325.
De Oliveira Alves, N., Vessoni, A.T., Quinet, A., Fortunato, R.S., Kajitani, G.S., Peixoto, M.S., de Souza Hacon, S., Artaxo, P., Saldiva, P., Menck, C.F.M., 2017. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Scientific reports 7, 10937.
Ding, N., Chen, S.-J., Wang, T., Wang, T., Mai, B.-X., 2018. Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM2.5) in three regions of South China. Environmental pollution 238, 823-832.
Dong, X., Fu, J.S., Huang, K., Lin, N.-H., Wang, S.-H., Yang, C.-E., 2018. Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region. Scientific reports 8, 8962.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., Weber, R., 2014. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmospheric Environment 89, 235-241.
Dumka, U., Kaskaoutis, D., Srivastava, M., Devara, P., 2015. Scattering and absorption properties of near-surface aerosol over Gangetic–Himalayan region: the role of boundary-layer dynamics and long-range transport. Atmospheric Chemistry and Physics 15, 1555-1572.
Engström, J.E., Leck, C., 2017. Seasonal variability in atmospheric black carbon at three stations in South-Asia. Tellus B: Chemical and Physical Meteorology 69, 1331102.
Fan, Q., Lan, J., Liu, Y., Wang, X., Chan, P., Fan, S., Hong, Y., Liu, Y., Zeng, Y., Liang, G., 2015. Diagnostic analysis of the sulfate aerosol pollution in spring over Pearl River Delta, China. Aerosol and Air Quality Research 15, 46-57.
Fischer, E., Jaffe, D., Marley, N., Gaffney, J., Marchany‐Rivera, A., 2010. Optical properties of aged Asian aerosols observed over the US Pacific Northwest. Journal of Geophysical Research: Atmospheres 115.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J., Malingre, G., Cachier, H., Buat-Menard, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry 22, 19-39.
Hakkim, H., Sinha, V., Chandra, B., Kumar, A., Mishra, A., Sinha, B., Sharma, G., Pawar, H., Sohpaul, B., Ghude, S.D., 2019. Volatile organic compound measurements point to fog-induced biomass burning feedback to air quality in the megacity of Delhi. Science of The Total Environment 689, 295-304.
Han, Y., Cao, J., Chow, J.C., Watson, J.G., An, Z., Jin, Z., Fung, K., Liu, S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC. Chemosphere 69, 569-574.
Han, Y., Cao, J., Lee, S., Ho, K., An, Z., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an, China. Atmospheric Chemistry and Physics 10, 595-607.
Han, Y., Chen, Y., Ahmad, S., Feng, Y., Zhang, F., Song, W., Cao, F., Zhang, Y., Yang, X., Li, J., 2018. High time-and size-resolved measurements of PM and chemical composition from coal combustion: implications for the EC formation process. Environmental science & technology 52, 6676-6685.
Han, Y., Lee, S., Cao, J., Ho, K., An, Z., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Hidy, G., Heisler, S., Watson, J., Wolff, G., 2020. Winter Urban Chemistry and Denver’s Brown Cloud: Part 1—Light Extinction and Visibility. Aerosol Science and Engineering, 1-16.
Hofschreuder, P., Zhao, Y.Y., Aarnink, A., Ogink, N., 2008. Measurement protocol for emissions of fine dust from animal houses: considerations, draft protocol and validation. Animal Sciences Group.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., Wang, S.-H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmospheric Environment 150, 366-378.
Huang, K., Fu, J.S., Hsu, N.C., Gao, Y., Dong, X., Tsay, S.-C., Lam, Y.F., 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmospheric environment 78, 291-302.
Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., Wang, Y., 2016. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research 168, 70-79.
Huang, X., Qiu, R., Chan, C.K., Kant, P.R., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]= 1.5. Atmospheric Research 99, 488-495.
Hyvärinen, A.P., Lihavainen, H., Komppula, M., Sharma, V., Kerminen, V.M., Panwar, T., Viisanen, Y., 2009. Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, northern India. Journal of Geophysical Research: Atmospheres 114.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695.
Jia, R., Luo, M., Liu, Y., Zhu, Q., Hua, S., Wu, C., Shao, T., 2019. Anthropogenic aerosol pollution over the eastern slope of the Tibetan Plateau. Advances in Atmospheric Sciences 36, 847-862.
Jongejans, L.L., Strauss, J., Lenz, J., Peterse, F., Mangelsdorf, K., Fuchs, M., Grosse, G., 2018. Organic carbon stored in a thermokarst affected landscape on Baldwin Peninsula, Alaska. Laboratoire EDYTEM 0 UMR5204.
Jung, C.H., Lee, J.Y., Um, J., Lee, S.S., Kim, Y.P., 2018. Chemical composition based aerosol optical properties according to size distribution and mixture types during smog and Asian dust events in Seoul, Korea. Asia-Pacific Journal of Atmospheric Sciences 54, 19-32.
Jung, J., Lee, H., Kim, Y.J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of environmental management 90, 3231-3244.
Kaskaoutis, D., Kumar, S., Sharma, D., Singh, R.P., Kharol, S., Sharma, M., Singh, A., Singh, S., Singh, A., Singh, D., 2014. Effects of crop residue burning on aerosol properties, plume characteristics, and long‐range transport over northern India. Journal of Geophysical Research: Atmospheres 119, 5424-5444.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Keene, W.C., Pszenny, A.A., Galloway, J.N., Hawley, M.E., 1986. Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Khalizov, A.F., Xue, H., Wang, L., Zheng, J., Zhang, R., 2009. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. The Journal of Physical Chemistry A 113, 1066-1074.
Kim, S.-W., Yoon, S.-C., Jefferson, A., Ogren, J.A., Dutton, E.G., Won, J.-G., Ghim, Y.S., Lee, B.-I., Han, J.-S., 2005. Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmospheric Environment 39, 39-50.
Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres 109.
Kirillova, E.N., Andersson, A., Sheesley, R.J., Kruså, M., Praveen, P., Budhavant, K., Safai, P., Rao, P., Gustafsson, Ö., 2013. 13C‐and 14C‐based study of sources and atmospheric processing of water‐soluble organic carbon (WSOC) in South Asian aerosols. Journal of Geophysical Research: Atmospheres 118, 614-626.
Koch, D., 2001. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. Journal of Geophysical Research: Atmospheres 106, 20311-20332.
Koutrakis, P., Sioutas, C., Ferguson, S., Wolfson, J., Mulik, J.D., Burton, R.M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental science & technology 27, 2497-2501.
Krivacsy, Z., Hoffer, A., Sarvari, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231-6244.
Kuang, Y., Zhao, C., Ma, N., Liu, H., Bian, Y., Tao, J., Hu, M., 2016. Deliquescent phenomena of ambient aerosols on the North China Plain. Geophysical Research Letters 43, 8744-8750.
Kulmala, M., Korhonen, P., Vesala, T., Hansson, H.-C., Noone, K., Svenningsson, B., 1996. The effect of hygroscopicity on cloud droplet formation. Tellus B: Chemical and Physical Meteorology 48, 347-360.
Lack, D.A., Langridge, J.M., Bahreini, R., Cappa, C.D., Middlebrook, A.M., Schwarz, J.P., 2012. Brown carbon and internal mixing in biomass burning particles. Proceedings of the National Academy of Sciences 109, 14802-14807.
Laskin, A., Laskin, J., Nizkorodov, S.A., 2015. Chemistry of atmospheric brown carbon. Chemical reviews 115, 4335-4382.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45, 5784-5794.
Lee, C.-T., Ram, S.S., Nguyen, D.L., Chou, C.C., Chang, S.-Y., Lin, N.-H., Chang, S.-C., Hsiao, T.-C., Sheu, G.-R., Ou-Yang, C.-F., 2016. Aerosol chemical profile of near-source biomass burning smoke in Sonla, Vietnam during 7-SEAS campaigns in 2012 and 2013. Aerosol Air Qual. Res 16, 2603-2617.
Li, B., Zhang, J., Zhao, Y., Yuan, S., Zhao, Q., Shen, G., Wu, H., 2015. Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China. Atmospheric Environment 106, 223-231.
Li, L., Lai, W., Pu, J., Mo, H., Dai, D., Wu, G., Deng, S., 2018. Polar organic tracers in PM2.5 aerosols from an inland background area in Southwest China: Correlations between secondary organic aerosol tracers and source apportionment. Journal of Environmental Sciences 69, 281-293.
Li, N., Han, W., Wei, X., Shen, M., Sun, S., 2019. Chemical characteristics and human health assessment of PM1 during the Chinese Spring Festival in Changchun, Northeast China. Atmospheric Pollution Research 10, 1823-1831.
Li, W., Shao, L., 2009a. Observation of nitrate coatings on atmospheric mineral dust particles. Atmospheric Chemistry and Physics 9, 1863-1871.
Li, W., Shao, L., 2009b. Observation of nitrate coatings on atmospheric mineral dust particles. Atmospheric Chemistry & Physics 9.
Li, W., Shao, L., Buseck, P., 2010. Haze types in Beijing and the influence of agricultural biomass burning. Atmospheric Chemistry and Physics 10, 8119-8130.
Liang, Y., Che, H., Gui, K., Zheng, Y., Yang, X., Li, X., Liu, C., Sheng, Z., Sun, T., Zhang, X., 2019. Impact of biomass burning in South and Southeast Asia on background aerosol in Southwest China. Aerosol and Air Quality Research 19, 1188-1204.
Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., Kang, K., 2012. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmospheric Chemistry and Physics 12, 2007-2024.
Lim, S., Lee, M., Rhee, T.S., 2019. Chemical characteristics of submicron aerosols observed at the King Sejong Station in the northern Antarctic Peninsula from fall to spring. Science of the Total Environment 668, 1310-1316.
Lin, G., Penner, J.E., Flanner, M.G., Sillman, S., Xu, L., Zhou, C., 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. Journal of Geophysical Research: Atmospheres 119, 7453-7476.
Liu, D., Su, Y., Peng, H., Yan, W., Li, Y., Liu, X., Zhu, B., Wang, H., Zhang, X., 2018a. Size Distributions of Water-soluble Inorganic Ions in Atmospheric Aerosols during the Meiyu Period on the North Shore of Taihu Lake, China. Aerosol and Air Quality Research 18, 2997-3008.
Liu, L., Tan, H., Fan, S., Cai, M., Xu, H., Li, F., Chan, P., 2018b. Influence of aerosol hygroscopicity and mixing state on aerosol optical properties in the Pearl River Delta region, China. Science of the Total Environment 627, 1560-1571.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183, 119-131.
Lourens, A.S., Butler, T.M., Beukes, J.P., Van Zyl, P.G., Fourie, G.D., Lawrence, M.G., 2016. Investigating atmospheric photochemistry in the Johannesburg-Pretoria megacity using a box model. South African Journal of Science 112, 01-11.
Lu, Z., Streets, D.G., Winijkul, E., Yan, F., Chen, Y., Bond, T.C., Feng, Y., Dubey, M.K., Liu, S., Pinto, J.P., 2015. Light absorption properties and radiative effects of primary organic aerosol emissions. Environmental science & technology 49, 4868-4877.
Ma, L., Yu, Y., Wang, B., Zhao, S., Li, G., 2017. Day-night variation and source apportionment of carbonaceous aerosols in PM10 during spring and summer of Lanzhou. Huan jing ke xue= Huanjing kexue 38, 1289-1297.
Matawle, J., Pervez, S., Dewangan, S., Tiwari, S., Bisht, D.S., Pervez, Y.F., 2014. PM2.5 chemical source profiles of emissions resulting from industrial and domestic burning activities in India. Aerosol and Air Quality Research 14, 2051-2066.
Na, K., Sawant, A.A., Song, C., Cocker III, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
Ogren, J.A., 2010. Comment on “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols”. Aerosol Science and Technology 44, 589-591.
Pan, X., Kanaya, Y., Wang, Z., Liu, Y., Pochanart, P., Akimoto, H., Sun, Y., Dong, H., Li, J., Irie, H., 2011. Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China. Atmospheric Chemistry & Physics 11.
Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Wentworth, G.R., Michalski, G., Huang, X., Wang, Y., 2018. Source Apportionment of Aerosol Ammonium in an Ammonia‐Rich Atmosphere: An Isotopic Study of Summer Clean and Hazy Days in Urban Beijing. Journal of Geophysical Research: Atmospheres 123, 5681-5689.
Pani, S., Verma, S., 2014. Variability of winter and summertime aerosols over eastern India urban environment. Atmospheric research 137, 112-124.
Pani, S.K., Chantara, S., Khamkaew, C., Lee, C.-T., Lin, N.-H., 2019. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research 224, 180-195.
Pani, S.K., Lee, C.-T., Chou, C.C.-K., Shimada, K., Hatakeyama, S., Takami, A., Wang, S.-H., Lin, N.-H., 2017. Chemical characterization of wintertime aerosols over islands and mountains in East Asia: Impacts of the continental Asian outflow. Aerosol Air Qual. Res 17, 3006-3036.
Pani, S.K., Lin, N.-H., Chantara, S., Wang, S.-H., Khamkaew, C., Prapamontol, T., Janjai, S., 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of The Total Environment 633, 892-911.
Park, S., Song, C., Kim, M., Kwon, S., Lee, K., 2004. Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea. Environmental monitoring and assessment 93, 157-183.
Park, S.S., Yu, J., 2016. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment 136, 114-122.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Permadi, D.A., Kim Oanh, N., Vautard, R., 2018. Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia. Atmos. Chem. Phys 18, 2725-2747.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sánchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Popovicheva, O.B., Shonija, N.K., Persiantseva, N., Timofeev, M., Diapouli, E., Eleftheriadis, K., Borgese, L., Nguyen, X.A., 2017. Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol Air Qual. Res 17, 2762-2779.
Qiao, T., Zhao, M., Xiu, G., Yu, J., 2016. Simultaneous monitoring and compositions analysis of PM1 and PM2. 5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Science of the Total Environment 557, 386-394.
Querol, X., Alastuey, A., Viana, M., Moreno, T., Reche, C., Minguillón, M., Ripoll, A., Pandolfi, M., Amato, F., Karanasiou, A., 2013. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmospheric Chemistry and Physics 13, 6185-6206.
Rajesh, T.A., Ramachandran, S., 2019. Aerosol Optical Properties over Gurushikhar, Mt. Abu: A High Altitude Mountain Site in India. Aerosol and Air Quality Research 19, 1259-1271.
Ram, K., Sarin, M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science 41, 88-98.
Ramírez, O., de la Campa, A.S., de la Rosa, J., 2018. Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research 210, 110-122.
Ramachandran, S., Rengarajan, R., Sarin, M., 2009. Atmospheric carbonaceous aerosols: issues, radiative forcing and climate impacts. Current Science 97, 18.
Reid, J.S., Eck, T.F., Christopher, S.A., Koppmann, R., Dubovik, O., Eleuterio, D., Holben, B.N., Reid, E.A., Zhang, J., 2005. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 827-849.
Reid, J.S., Hobbs, P.V., 1998. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research: Atmospheres 103, 32013-32030.
Ro, C.-U., Hwang, H., Kim, H., Chun, Y., Van Grieken, R., 2005. Single-particle characterization of four “Asian Dust” samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environmental science & technology 39, 1409-1419.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry & Physics 8.
Safai, P., Raju, M., Rao, P., Pandithurai, G., 2014. Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmospheric environment 92, 493-500.
Salve, P., Krupadam, R., Wate, S., 2007. A study on major inorganic ion composition of atmospheric aerosols. Journal of environmental biology 28, 241-244.
Sang, X., Zhang, Z., Chan, C., Engling, G., 2013. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric environment 78, 113-123.
Satsangi, A., Pachauri, T., Singla, V., Lakhani, A., Kumari, K.M., 2010. Carbonaceous aerosols at a suburban site in Indo-Gangetic plain. 92.60. Mt.
Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, F., de Angelis, I.H., Morán-Zuloaga, D., 2017. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data.
Schmid, O., Artaxo, P., Arnott, W., Chand, D., Gatti, L.V., Frank, G., Hoffer, A., Schnaiter, M., Andreae, M., 2006. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmospheric Chemistry and Physics 6, 3443-3462.
See, S.W., Balasubramanian, R., 2008. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment 42, 8852-8862.
Singh, A., Chou, C.C.-K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-T., Pani, S.K., Chi, K.H., Huang, C.-H., Lee, C.-T., 2020. Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution, 114813.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., McElroy, M.B., 2018. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics 18, 7423-7438.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., McMillan, W., Petzold, A., Schlager, H., Weinzierl, B., 2007. Aircraft measurements over Europe of an air pollution plume from Southeast Asia? Aerosol and chemical characterization.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003a. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Streets, D.G., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S., Tsai, N., Wang, M.Q., 2003b. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research: Atmospheres 108.
Sudheer, A., Sarin, M., 2008. Carbonaceous aerosols in MABL of Bay of Bengal: influence of continental outflow. Atmospheric Environment 42, 4089-4100.
Sun, Y., Jiang, Q., Xu, Y., Ma, Y., Zhang, Y., Liu, X., Li, W., Wang, F., Li, J., Wang, P., 2016. Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research: Atmospheres 121, 2508-2521.
Tao, J., Zhang, L., Cao, J., Zhang, R., 2017. A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics 17, 9485-9518.
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., Luo, L., 2013. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research 122, 270-283.
Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., Wang, S., 2015. Aerosol chemical composition and light scattering during a winter season in Beijing. Atmospheric Environment 110, 36-44.
Tao, J., Zhang, Z., Wu, Y., Zhang, L., Wu, Z., Cheng, P., Li, M., Chen, L., Zhang, R., Cao, J., 2019. Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China. Atmospheric Chemistry and Physics 19, 8471-8490.
Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H., Yao, X., 2017. Identification of major sources of atmospheric NH3 in an urban environment in northern China during wintertime. Environmental science & technology 51, 6839-6848.
Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., Tsai, Y.I., 2019. Molecular markers for biomass burning associated with the characterization of PM2. 5 and component sources during dry season haze episodes in Upper South East Asia. Science of The Total Environment 658, 708-722.
Thuy, N.T.T., Dung, N.T., Sekiguchi, K., Thuy, L.B., Hien, N.T.T., Yamaguchi, R., 2018. Mass concentrations and carbonaceous compositions of PM0.1, PM2.5, and PM10 at urban locations in Hanoi, Vietnam. Aerosol Air Qual. Res 18, 1591-1605.
Tian, P., Wang, G., Zhang, R., Wu, Y., Yan, P., 2015. Impacts of aerosol chemical compositions on optical properties in urban Beijing, China. Particuology 18, 155-164.
Tiitta, P., Vakkari, V., Croteau, P., Beukes, J., Van Zyl, P., Josipovic, M., Venter, A., Jaars, K., Pienaar, J., Ng, N., 2014. Chemical composition, main sources and temporal variability of PM 1 aerosols in southern African grassland. Atmospheric Chemistry and Physics 14, 1909-1927.
Turner, J., Colbeck, I., 2008. Physical and chemical properties of atmospheric aerosols. Environmental Chemistry of Aerosols, 1-29.
Udayasoorian, C., Jayabalakrishnan, R., Suguna, A., Gogoi, M.M., Suresh Babu, S., 2014. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India, Annales Geophysicae. Copernicus GmbH, pp. 1361-1371.
Vakkari, V., Beukes, J.P., Dal Maso, M., Aurela, M., Josipovic, M., van Zyl, P.G., 2018. Major secondary aerosol formation in southern African open biomass burning plumes. Nature Geoscience 11, 580.
Vakkari, V., Kerminen, V.M., Beukes, J.P., Tiitta, P., van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Worsnop, D.R., Kulmala, M., 2014. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters 41, 2644-2651.
Venter, A.D., Vakkari, V., Beukes, J.P., Van Zyl, P.G., Laakso, H., Mabaso, D., Tiitta, P., Josipovic, M., Kulmala, M., Pienaar, J.J., 2012. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. South African Journal of Science 108, 1-10.
Venter, A.D., Van Zyl, P.G., Beukes, J.P., Swartz, J.-S., Josipovic, M., Vakkari, V., Laakso, L., Kulmala, M., 2018. Size-resolved characteristics of inorganic ionic species in atmospheric aerosols at a regional background site on the South African Highveld. Journal of Atmospheric Chemistry 75, 285-304.
Wan, X., Kang, S., Wang, Y., Xin, J., Liu, B., Guo, Y., Wen, T., Zhang, G., Cong, Z., 2015. Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam Co Station, 4730 m asl). Atmospheric Research 153, 155-164.
Wang, F., Feng, T., Guo, Z., Li, Y., Lin, T., Rose, N.L., 2019a. Sources and dry deposition of carbonaceous aerosols over the coastal East China Sea: Implications for anthropogenic pollutant pathways and deposition. Environmental pollution 245, 771-779.
Wang, F., Guo, Z., Lin, T., Hu, L., Chen, Y., Zhu, Y., 2015. Characterization of carbonaceous aerosols over the East China Sea: The impact of the East Asian continental outflow. Atmospheric Environment 110, 163-173.
Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q., Sullivan, A., Xia, L., 2016a. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 148, 526-536.
Wang, Q., Zhuang, G., Huang, K., Liu, T., Lin, Y., Deng, C., Fu, Q., Fu, J.S., Chen, J., Zhang, W., 2016b. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmospheric research 169, 86-95.
Wang, T., Du, Z., Tan, T., Xu, N., Hu, M., Hu, J., Guo, S., 2019b. Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013-2017. Atmospheric Environment 206, 293-302.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Weber, R.J., Guo, H., Russell, A.G., Nenes, A., 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience 9, 282.
Wei, L., Yang, F., Tan, J., MA, Y., HE, K., 2014. Research progress on aerosol extinction properties. Environmental Chemistry 33, 705-715.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445-1463.
Wu, G., Du, X., Wu, X., Fu, X., Kong, S., Chen, J., Wang, Z., Bai, Z., 2013. Chemical composition, mass closure and sources of atmospheric PM10 from industrial sites in Shenzhen, China. Journal of Environmental Sciences 25, 1626-1635.
Wu, G., Wan, X., Gao, S., Fu, P., Yin, Y., Li, G., Zhang, G., Kang, S., Ram, K., Cong, Z., 2018. Humic-like substances (HULIS) in aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, light absorption properties, and sources. Environmental science & technology 52, 7203-7211.
Wu, Y., Zhang, R., Tian, P., Tao, J., Hsu, S.-C., Yan, P., Wang, Q., Cao, J., Zhang, X., Xia, X., 2016. Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013. Atmospheric environment 124, 217-223.
Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ma ßLing, A., Wiedensohler, A., Petaejae, T., Dal Maso, M., Kulmala, M., 2007. New particle formation in Beijing, China: Statistical analysis of a 1‐year data set. Journal of Geophysical Research: Atmospheres 112.
Xia, C., Sun, J., Qi, X., Shen, X., Zhong, J., Zhang, X., Wang, Y., Zhang, Y., Hu, X., 2019. Observational study of aerosol hygroscopic growth on scattering coefficient in Beijing: A case study in March of 2018. Science of The Total Environment 685, 239-247.
Xia, Y., Tao, J., Zhang, L., Zhang, R., Li, S., Wu, Y., Cao, J., Wang, X., Ma, Q., Xiong, Z., 2017. Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou. Science of the Total Environment 587, 240-247.
Xu, X., Zhao, W., Zhang, Q., Wang, S., Fang, B., Chen, W., Venables, D.S., Wang, X., Pu, W., Wang, X., 2016. Optical properties of atmospheric fine particles near Beijing during the HOPE-J 3 A campaign. Atmospheric Chemistry and Physics 16, 6421-6439.
Yadav, I.C., Devi, N.L., Li, J., Syed, J.H., Zhang, G., Watanabe, H., 2017. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environmental pollution 227, 414-427.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Yang, Y., Liu, X., Qu, Y., An, J., Jiang, R., Zhang, Y., Sun, Y., Wu, Z., Zhang, F., Xu, W., 2015. Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics 15, 8165.
Yao, T., Huang, X., He, L., Hu, M., Sun, T., Xue, L., Lin, Y., Zeng, L., Zhang, Y., 2010. High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates. Science China Chemistry 53, 1801-1808.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Zhang, L., 2012. Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmospheric environment 46, 189-194.
Yu, J., Yan, C., Liu, Y., Li, X., Zhou, T., Zheng, M., 2018. Potassium: A Tracer for Biomass Burning in Beijing. Aerosol Air Qual. Res 18, 2447-2459.
Yuan, C.-S., Lee, C.-G., Liu, S.-H., Chang, J.-c., Yuan, C., Yang, H.-Y., 2006. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmospheric Research 82, 663-679.
Zhang, J., Tong, L., Huang, Z., Zhang, H., He, M., Dai, X., Zheng, J., Xiao, H., 2018a. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Science of the Total Environment 639, 793-803.
Zhang, N., Cao, J., Liu, S., Zhao, Z., Xu, H., Xiao, S., 2014a. Chemical composition and sources of PM2.5 and TSP collected at Qinghai Lake during summertime. Atmospheric research 138, 213-222.
Zhang, N., Cao, J., Wang, Q., Huang, R., Zhu, C., Xiao, S., Wang, L., 2018b. Biomass burning influences determination based on PM2.5 chemical composition combined with fire counts at southeastern Tibetan Plateau during pre-monsoon period. Atmospheric Research 206, 108-116.
Zhang, Q., Shen, Z., Ning, Z., Wang, Q., Cao, J., Lei, Y., Sun, J., Zeng, Y., Westerdahl, D., Wang, X., 2018c. Characteristics and source apportionment of winter black carbon aerosols in two Chinese megacities of Xi’an and Hong Kong. Environmental Science and Pollution Research 25, 33783-33793.
Zhang, T., Cao, J.-J., Chow, J.C., Shen, Z.-X., Ho, K.-F., Ho, S.S.H., Liu, S.-X., Han, Y.-M., Watson, J.G., Wang, G.-H., 2014b. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi’an, China. Journal of the Air & Waste Management Association 64, 1317-1327.
Zhang, Z., Gao, J., Zhang, L., Wang, H., Tao, J., Qiu, X., Chai, F., Li, Y., Wang, S., 2017. Observations of biomass burning tracers in PM2.5 at two megacities in North China during 2014 APEC summit. Atmospheric environment 169, 54-64.
Zhao, J., Zhang, F., Xu, Y., Chen, J., 2011. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research 99, 546-562.
Zhao, T., Yang, L., Yan, W., Zhang, J., Lu, W., Yang, Y., Chen, J., Wang, W., 2017. Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China. Science of the Total Environment 575, 458-466.
Zhao, Y., Ren, H., Deng, J., Li, L., Hu, W., Ren, L., Yue, S., Fan, Y., Wu, L., Li, J., 2019a. High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of The Total Environment, 134475.
Zhao, Z., Cao, J., Shen, Z., Huang, R.-J., Hu, T., Wang, P., Zhang, T., Liu, S., 2015. Chemical composition of PM2.5 at a high–altitude regional background site over Northeast of Tibet Plateau. Atmospheric Pollution Research 6, 815-823.
Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L.W.A., Su, X., Liu, S., Han, Y., Wang, G., 2013. Aerosol particles at a high‐altitude site on the Southeast Tibetan Plateau, China: implications for pollution transport from South Asia. Journal of Geophysical Research: Atmospheres 118, 11,360-311,375.
Zhao, Z., Wang, Q., Li, L., Han, Y., Ye, Z., Pongpiachan, S., Zhang, Y., Liu, S., Tian, R., Cao, J., 2019b. Characteristics of PM2.5 at a High-Altitude Remote Site in the Southeastern Margin of the Tibetan Plateau in Premonsoon Season. Atmosphere 10, 645.
Zheng, N., Song, S., Jin, X., Jia, H., Wang, Y., Ji, Y., Guo, L., Li, P., 2019. Assessment of Carbonaceous Aerosols at Mount Tai, North China: Secondary Formation and Regional Source Analysis. Aerosol and Air Quality Research 19, 1708-1720.
Zhou, G., Xu, J., Gao, W., Gu, Y., Mao, Z., Cui, L., 2018. Characteristics of PM1 over Shanghai, relationships with precursors and meteorological variables and impacts on visibility. Atmospheric Environment 184, 224-232.
Zhou, S., Collier, S., Jaffe, D.A., Zhang, Q., 2019. Free tropospheric aerosols at the Mt. Bachelor Observatory: more oxidized and higher sulfate content compared to boundary layer aerosols. Atmospheric Chemistry and Physics 19, 1571-1585.
Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
Zielinski, T., Bolzacchini, E., Cataldi, M., Ferrero, L., Graßl, S., Hansen, G., Mateos, D., Mazzola, M., Neuber, R., Pakszys, P., 2020. Study of Chemical and Optical Properties of Biomass Burning Aerosols during Long-Range Transport Events toward the Arctic in Summer 2017. Atmosphere 11, 84.
Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, Q., Wang, Y., 2018. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research 201, 235-246.
王璐, 温天雪, 苗红妍, 高文康, 王跃思, 2016. 太原大气颗粒物中水溶性无机离子质量浓度及粒径分布特征. 环境科学 37, 3249-3257.
郝丽, 谭燕, 2012. 黑碳-硫酸盐混合气溶胶的辐射特性分析. 2011 年第二十八届中国气象学会年会, 1-10.
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
陳鴻文, 2006. 生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標的影響. 中央大學環境工程研究所學位論文, 1-335.
莊仲霆, 2016. 2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析。國立中央大學環境工程研究所碩士論文.
陳威任, 2018. 2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化. 國立中央大學環境工程研究所碩士論文。
陳建安, 2018. 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
洪國鈞, 2014. 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析. 國立中央大學環境工程研究所碩士論文.
陳彥銘, 2018. 2016~2017 年東亞背景、生質燃燒傳輸及高山雲霧水氣氣膠水溶性離子短時間變化. 國立中央大學環境工程研究所碩士論文.
邱鈞煦, 2019. 2016-2017年鹿林山長程傳輸氣膠特性分析. 國立中央大學環境工程研究所碩士論文.
吳俊彥, 2019. 2018 鹿林山生質燃燒煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
許博閔, 2011. 鹿林山大氣背景站不同氣團氣膠光學特性. 國立中央大學環境工程研究所碩士論文.
王韋智, 2020. 2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德(Chung-Te Lee) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明