博碩士論文 106327010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.149.28.134
姓名 陳皓庭(Hao-Ting Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 產線整合監測系統暨資訊串流功能開發研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 加工製程產線日趨複雜且產能的需求提升,為降低生產設備維護成本及提高生產效率,預防甚至預測的產線維護策略逐漸成為主流;為達到產線設備壽命評估的需求,需仰賴巨量數據的資訊探勘與建模;從近5年工業4.0發展趨勢,異質機台聯網與物聯網系統架構的整合亦為趨勢。本研究的內容為建構整合監測系統與資訊串流功能。系統具備多物理量同步擷取功能,達到加工製程中多樣態資訊收集需求,納入開放平台通訊統一架構(Open Platform Communication Unified Architecture, OPC UA)與Firebase雲端開發平台,強化異質聯網能力,亦具備資料前處理模組,可以即時檢視資料狀態;而智慧預測模組可掛載離線訓練所獲得的預測模型,即時做出決策判斷。而研究中,以型鋼加工鋸帶切削數據進行數據再分析,對所發展系統作驗證;數據經段落選擇、清理、特徵提取等步驟,並以相關係數與方差擴張因子篩選特徵,使用非監督式聚類演算法¬¬ 自組織映射(Self-Organizing Map)訓練預測模型,搭配最小量化誤差(Minimum Quantization Error)建立鋸帶老化衰退指標;最終引入整合監測系統確認系統有效性。使用SOM訓練模型對不同品牌做預測,可有效在驗證鋸帶#1壽命達97%、驗證鋸帶#4 壽命達95.5%、測試鋸帶#3壽命達83.3%、測試鋸帶#5壽命達97.6%時提出預警。
摘要(英) As production lines become more complicated and high production capacity is demanding, preventive even predictive maintenance strategies are becoming more and more mainstream in order to reduce maintenance costs and improve production efficiency. To achieve the prognostic needs of production equipment, we rely on the information exploration and modeling of big data. With the development trend of Industry 4.0, the integration of heterogeneous machine network and Internet of Things system architecture is gradually gaining importance. Based on the above, this study first constructs an integrated monitoring system and data streaming function. The system is equipped with multi-physics signal synchronized acquiring function to meet the needs of multi-mode information collection in the process. Incorporate Open Platform Communication Unified Architecture (OPC UA) and Firebase cloud development platform to strengthen heterogeneous networking capabilities. Develop data pre-processing module for real-time overview of data status, intelligence predict module can mount predict models from offline training to make real-time predictive warning. Afterward, data re-analysis by band saw cutting data in the steel machining center for system verification. The analysis consist of segment selection, data cleaning, screening redundant features by correlation coefficient and Variance Inflation Factor (VIF). Moreover, Apply the unsupervised learning algorithm—Self-Organizing Map (SOM) to train the prediction model, and use Minimum Quantization Error (MQE) to build up the aging and degradation assessment of saw bands. Finally, integrate the model into the integrated monitoring system to confirm system effectiveness. The result show that it is effective in providing early warning when the life of saw band #1 is 97%, the life of saw band #4 is 95.5%, the life of saw band #3 is 83.3%, and the life of saw band #5 is 97.6%.
關鍵字(中) ★ 整合監測系統
★ OPC UA
★ SOM自組織映射
★ VIF方差擴張因子
★ 鋸帶
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-3 研究範疇與章節內容 6
第二章 理論基礎 7
2-1 數據前處理 7
2-1-1 數位濾波 7
2-1-2 數據正規化 9
2-2 時域分析 10
2-2-1 自相關函數 10
2-2-2 幅值分析 10
2-3 頻域分析 13
2-4 機器學習 15
2-4-1 自組織映射 16
2-5 特徵選擇準則 19
2-5-1 相關係數分析 19
2-5-2 方差擴張因子 20
第三章 整合量測系統暨功能模塊建構與測試 21
3-1 系統架構 21
3-2 使用者介面及功能模組 23
3-2-1 監測模組暨功能模組介紹 23
3-2-2 高低頻率訊號同步監測 27
第四章 實例驗證—帶鋸機鋸帶殘餘壽命評估 33
4-1 型鋼加工中心鋸切實驗介紹 33
4-1-1 型鋼加工中心簡介 33
4-1-2 實驗機台與刀具 34
4-1-3 感測與量測系統 37
4-2 數據分析 40
4-2-1 數據收集與分群 40
4-2-2 數據段落選擇 43
4-2-3 特徵提取與篩選 47
4-2-4 鋸帶老化壽命評估模型訓練與驗證 52
4-3 模型應用測試與討論 58
第五章 結論與未來展望 62
5-1 結論 62
5-2 未來展望 63
參考文獻 64
附錄A 不同特徵訓練模型之測試與討論 69
參考文獻 [1] 李傑,­工業大數據‑‑工業4.0時代的智慧轉型與價值創新,天下雜誌股份有限公司,台北,2016。
[2] 行政院,行政院生產力 4.0 發展方案,行政院科技會報,2015
[3] 李傑, 倪軍, and 王安正,從大數據到智慧生產與服務創新,前程文化事業有限公司,台北,2017。
[4] P. P. D. Team, OEE for Operators: Overall Equipment Effectiveness. Taylor & Francis, 1999.
[5] S. Nallusamy, V. Kumar, V. Yadav, U. K. Prasad, and S. Suman, "Implementation of total productive maintenance to enhance the overall equipment effectiveness in medium scale industries," International Journal of Mechanical and Production Engineering Research and Development, vol. 3, no. 4, pp. 582-587, 2018.
[6] A. K. S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483-1510, 2006.
[7] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, "Machinery health prognostics: A systematic review from data acquisition to RUL prediction," Mechanical Systems and Signal Processing, vol. 104, pp. 799-834, 2018.
[8] Y. Peng, M. Dong, and M. J. Zuo, "Current status of machine prognostics in condition-based maintenance: a review," The International Journal of Advanced Manufacturing Technology, vol. 50, no. 1, pp. 297-313, 2010.
[9] A. Rastegari, A. Archenti, and M. Mobin, "Condition based maintenance of machine tools: Vibration monitoring of spindle units," in 2017 Annual Reliability and Maintainability Symposium, pp. 1-6, 2017
[10] A. Mérigaud and J. V. Ringwood, "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, vol. 66, pp. 53-78, 2016.
[11] M. Asgarpour and J. Sørensen, "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, vol. 11, Art no. 300, 2018.
[12] Z. Gao, C. Cecati, and S. X. Ding, "A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches," IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3768-3774, 2015.
[13] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, "Remaining useful life estimation – A review on the statistical data driven approaches," European Journal of Operational Research, vol. 213, no. 1, pp. 1-14, 2011.
[14] R. Liu, B. Yang, E. Zio, and X. Chen, "Artificial intelligence for fault diagnosis of rotating machinery: A review," Mechanical Systems and Signal Processing, vol. 108, pp. 33-47, 2018.
[15] L. Liao, H. Wang, and J. Lee, "A Reconfigurable Watchdog Agent® for Machine Health Prognostics," International Journal of COMADEM, vol. 11, no. 3, Art no. 2, 2008.
[16] W. Jin, Y. Chen, and J. Lee, "Methodology for Ball Screw Component Health Assessment and Failure Analysis," in ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference, vol. 2, no. 1252, 2013
[17] M. H. S. Harun, M. F. Ghazali, and A. R. Yusoff, "Analysis of tri-axial force and vibration sensors for detection of failure criterion in deep twist drilling process," The International Journal of Advanced Manufacturing Technology, vol. 89, no. 9, pp. 3535-3545, 2017.
[18] R. S. Nakandhrakumar, D. Dinakaran, G. Msn, and J. Pattabiraman, "A novel normalisation procedure for the sensor positioning problem in vibration monitoring of drilling using artificial neural networks," Insight - Non-Destructive Testing and Condition Monitoring, vol. 58, no. 10, pp. 556-563, 2016.
[19] A. Rai and S. Upadhyay, "Intelligent bearing performance degradation assessment and remaining useful life prediction based on self-organising map and support vector regression," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 6, pp. 1118-1132, 2017.
[20] T. Thaler, P. Potočnik, I. Bric, and E. Govekar, "Chatter detection in band sawing based on discriminant analysis of sound features," Applied Acoustics, vol. 77, pp. 114–121, 2014.
[21] J. J. Junz Wang, S.-H. Wu, and R.-S. Lee, "Chip fractal geometry and loading characteristics of sinusoidal multi-cutters in hack-sawing process," International Journal of Machine Tools and Manufacture, vol. 59, pp. 65-80, 2012.
[22] E. Eneyew and M. Ramulu, "Tool Wear Monitoring Using Microphone Signals and Recurrence Quantification Analysis when Drilling Composites," Advanced Materials Research, vol. 711, pp. 239-244, 2013.
[23] D. L. Hall and S. A. H. McMullen, Mathematical Techniques in Multisensor Data Fusion. Artech House, 2004.
[24] M. R. Karl, D. Mike Van, and M. Ken, "Application of sensor fusion and signal classification techniques in a distributed machinery condition monitoring system," in SPIE - The International Society for Optical Engineering, vol. 4051, pp. 329-336, 2000
[25] M. Xia, T. Li, L. Xu, L. Liu, and C. W. d. Silva, "Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 101-110, 2018.
[26] Vanraj, S. S. Dhami, and B. S. Pabla, "Gear fault classification using Vibration and Acoustic Sensor Fusion: A Case Study," in 2018 International Conference on Condition Monitoring and Diagnosis, pp. 1-6, 2018
[27] J. Zhu, Z. Ge, Z. Song, and F. Gao, "Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data," Annual Reviews in Control, vol. 46, pp. 107-133, 2018.
[28] X. Xu, Y. Lei, and Z. Li, "An Incorrect Data Detection Method for Big Data Cleaning of Machinery Condition Monitoring," IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2326-2336, 2020.
[29] M. Heydarzadeh, M. Zafarani, E. Ugur, B. Akin, and M. Nourani, "A model-based signal processing method for fault diagnosis in PMSM machine," in 2017 IEEE Energy Conversion Congress and Exposition, pp. 3160-3164, 2017
[30] M. P. Norton and D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, 2. Cambridge: Cambridge University Press, 2003.
[31] B. Porat, A Course in Digital Signal Processing. John Wiley & Sons, Inc., 1996.
[32] E. Frisk, M. Krysander, and D. Jung, "A Toolbox for Analysis and Design of Model Based Diagnosis Systems for Large Scale Models," IFAC-PapersOnLine, vol. 50, no. 1, pp. 3287-3293, 2017.
[33] T. D. Popescu and D. Aiordachioaie, "VIBROTOOL — Software tool for change detection and diagnosis in vibration signals," in 2016 IEEE 59th International Midwest Symposium on Circuits and Systems, pp. 1-4, 2016
[34] 曾奕嘉,"動態訊號分析工具箱發展與機械故障診斷應用研究," 機械工程學系,國立中央大學,碩士論文,2015
[35] M. Hamadache, J. H. Jung, J. Park, and B. D. Youn, "A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning," JMST Advances, vol. 1, no. 1, pp. 125-151, 2019.
[36] C. Huang, X. Yin, H. Huang, and Y. Li, "An Enhanced Deep Learning-Based Fusion Prognostic Method for RUL Prediction," IEEE Transactions on Reliability, vol. 69, no. 3, pp. 1097-1109, 2019.
[37] M. Hall, "Correlation-Based Feature Selection for Machine Learning," Department of Computer Science, The University of Waikato, Hamilton, NewZealand, 2000.
[38] S. Hikichi, M. Sugimoto, and M. Tomita, "Correlation-centred variable selection of a gene expression signature to predict breast cancer metastasis," Scientific Reports, vol. 10, no. 1, p. 7923, 2020.
[39] Z. Ye, B. Wu, and A. R. Sadeghian, "Induction motor mechanical fault online diagnosis with the application of artificial neural network," in 2001 Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 1015-1021, 2001
[40] A. Kumar, J. Ramkumar, N. K. Verma, and S. Dixit, "Detection and classification for faults in drilling process using vibration analysis," in 2014 International Conference on Prognostics and Health Management, pp. 1-6, 2014
[41] H. Kumar, T. Ranjit Kumar, M. Amarnath, and V. Sugumaran, "Fault diagnosis of bearings through vibration signal using Bayes classifiers," International Journal of Computer Aided Engineering and Technology, vol. 6, no. 1, pp. 14-28, 2014.
[42] K. Li, Y. L. Zhang, and Z. X. Li, "Application Research of Kalman Filter and SVM Applied to Condition Monitoring and Fault Diagnosis," Applied Mechanics and Materials, vol. 121-126, pp. 268-272, 2012.
[43] H. Zhou, J. Chen, G. Dong, H. Wang, and H. Yuan, "Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model," Mechanical Systems and Signal Processing, vol. 66-67, pp. 568-581, 2016.
[44] J. Deutsch and D. He, "Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 1, pp. 11-20, 2018.
[45] J. B. Yu and L. F. Xi, "Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes," International Journal of Production Research, vol. 46, no. 21, pp. 5907-5933, 2008.
[46] A. Rai and S. H. Upadhyay, "Intelligent bearing performance degradation assessment and remaining useful life prediction based on self-organising map and support vector regression," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 6, pp. 1118-1132, 2017.
[47] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice Hall Press, 2009.
[48] 黃俊傑:淺談動平均濾波器。2013年5月24日,取自 http://programmermagazine.github.io/201312/htm/article3.html
[49] 台部客:機器學習中之規範化,中心化,標準化,歸一化,正則化,正規化。2018年12月12日,取自 https://www.twblogs.net/a/5c111484bd9eee5e41839da7
[50] R. B. W. Heng and M. J. M. Nor, "Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition," Applied Acoustics, vol. 53, no. 1, pp. 211-226, 1998.
[51] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation, vol. 19, pp. 297-301, 1965.
[52] S. Raschka and V. Mirjalili,Python 機器學習,博碩文化股份有限公司,2018。
[53] H. Ritter and T. Kohonen, "Self-organizing semantic maps," Biological Cybernetics, vol. 61, no. 4, pp. 241-254, 1989.
[54] S. S. Haykin, Neural networks and learning machines. New York: Prentice Hall, 2009.
[55] E. A. Uriarte and F. D. Martín, "Topology preservation in SOM," International journal of applied mathematics and computer sciences, vol. 2, pp. 3192-3195, 2005.
[56] B. H. Ott, "A convergence criterion for self-organizing maps," Department of Computer Science, University of Rhode Island, Rhode Island, United States, 2012.
[57] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, 7e, 7. Wiley 2017.
[58] 李維楨 et al., "機械工廠內之異質機臺連網整合與應用," (in 繁體中文), 科儀新知, no. 221, pp. 26-34, 2019.
[59] 黃琮仁,"型鋼加工中心刀具狀態評估與切削液異常監測之研究," 機械工程學系,國立中央大學,碩士論文,2018
指導教授 潘敏俊 審核日期 2020-11-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明