博碩士論文 106327015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:44.200.77.92
姓名 徐英凱(Ying-Kai Hsu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 陰影疊紋式力-位移量測技術之研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 隨機奈米粒子模型應用於OLED 出光增益之研究★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,機械手臂逐漸普及於人類生活,因此各項感測元件亦漸受重視。本論文提出了一種新的角度與力-位移即時測量技術。本技術以陰影疊紋原理為基礎,透過所設計的感測片表面結構,搭配疊紋相位移測量的4步相移法,可即時取得感測片上各點的位移資訊。本研究首先根據光柵週期、入射光角度與觀測角設計出具四階結構或斜面結構的感測片,並架設陰影疊紋系統進行位移、角度與力-位移的疊紋拍攝。再將取得的疊紋影像,以Matlab撰寫程式進行位移分析,以驗證此創新構想的可行性。最後,將誤差分析列入考量,討論可能造成預期結果與實驗結果不同之主因。
所提出的技術的優點包括:本技術可大幅減少信號線數目且對電磁波和振動的敏感性低,並且藉由感測片的設計,將傳統陰影疊紋的移相裝置去除。實驗結果顯示,本技術的位移量測系統精密度為6µm,並且可區別出0g~300g的力-位移,擁有10g的解析能力,在本文的最後探討了各種誤差來源。此系統應用層面廣,可架設於自動化工廠中的各類夾具上以即時回饋位移情形。
摘要(英) In recent years, mechanical arms come into our life everywhere, such that many kinds of sensors have been developed. This thesis presents a new technique for angular and force-displacement measurement. We improve the traditional shadow moiré system by designing a target surface structure. Combine the 4-step phase shift method and the measurement of moiré shifting, we can obtain the displacement information of the target. Firstly, the targets with the fourth-order structure and the ramped structure are designed according to the effective grating pitch. The shadow moiré system is set up to measure the displacement, angular and force-displacement. The captured image of the moiré will be analyzed by Matlab to verify the feasibility of this innovative concept. Finally, the experimental results and the tolerances were analyzed and discussed.
The merits of the proposed technique consist of few signal wires and less susceptibility to electromagnetic waves and vibrations. The experimental results show that the proposed design has good relative relationship between the force and the displacement, leading to various applications, such as tactile sensors.
關鍵字(中) ★ 陰影疊紋
★ 位移量測
★ 力-位移量測
關鍵字(英) ★ Shadow moire
★ displacement measurement
★ force-displacement measurement
論文目次 摘要 I
Abstract II
致謝 III
目錄 IIIV
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1光學式觸覺感測器文獻回顧 3
1.2.2疊紋效應文獻回顧 6
1.3 研究目的 13
1.4 論文架構 14
第二章 基礎理論 15
2.1疊紋效應 15
2.1.1疊紋量測基本原理 15
2.1.2疊紋位移理論 18
2.1.3疊紋縮放理論 19
2.2陰影疊紋原理 21
2.3等間距相移演算法 22
2.3.1三步相移理論 23
2.3.2四步相移理論 24
2.3.3 Carré相移理論 25
2.3.4五步相移理論 26
2.4 瞬時四步移相結構設計原理 27
2.5小結 29
第三章 系統架構與模擬 30
3.1元件介紹 30
3.2 設計感測片 31
3.2.1 表面四階結構: 32
3.2.2 表面斜面結構: 33
3.3陰影疊紋系統 36
3.3.1 位移量測架構: 36
3.3.2角度量測系統: 37
3.3.3壓力量測系統: 38
3.3疊紋相位分析 38
3.3.1疊紋灰階標準化 39
3.3.2疊紋相位纏繞展開技術 39
3.3.3疊紋相位位移判斷流程 41
3.3.4疊紋旋轉與壓力計算 43
3.4陰影疊紋系統模擬 44
3.4.1位移量測模擬 44
3.4.2角度量測模擬 46
3.4.3壓力量測模擬 48
3.5小結 50
第四章 實驗結果與討論 51
4.1 實驗架構設置與校正 51
4.1.1 雷射系統校正 51
4.1.2雷射測距儀 52
4.2 位移實驗結果 54
4.2.1單點往復位移 55
4.2.2固定步階位移 59
4.2.3整面往復位移 61
4.3 旋轉角度實驗結果 64
4.2.1固定旋轉角度中心點位移 64
4.2.2即時整面旋轉角度 66
4.4 壓力實驗結果 69
4.2.1不同負載表面形貌變化 69
4.4.2不同負載壓力量測 71
4.4.3不同位置受壓量測 72
4.4.4不同框架壓力量測 74
4.5 小結 75
第五章 誤差分析 76
5.1 系統誤差 76
5.1.1入射光夾角影響 77
5.1.2 觀測角度影響 78
5.1.3 光源均勻度影響 80
5.1.4 光柵週期誤差 80
5.2隨機誤差 83
5.2.1環境雜訊 83
5.2.1溫度變化 84
5.3小結 85
第六章 結論與未來展望 86
參考文獻 88
參考文獻 [1] Z. Kappassov, J. A. Corrales, and V. Perdereau, "Tactile sensing in dexterous robot hands," Robotics and Autonomous Systems 74(17), 195-220 (2015).
[2] P. Yu, W. Liu, C. Gu, X. Cheng, and X. Fu, "Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement," Sensors 16(6), 819 (2016).
[3] T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong, H. Ding, Y. Gu, Z. Liu, and T. Zhang, "Flexible capacitive tactile sensor based on micropatterned dielectric layer," Small 12(36), 5042-5048 (2016).
[4] C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, "A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer," IEEE Sensors Journal 17(17), 5523-5528 (2017).
[5] P. D. Groot, "Principles of interference microscopy for the measurement of surface topography," Advances in Optics and Photonics 7(1), 1-65 (2015).
[6] W. Yuan, S. Dong, and E. Adelson, "Gelsight: High-resolution robot tactile sensors for estimating geometry and force," Sensors 17(12), 2762 (2017).
[7] M. K. Johnson, E. H. Adelson, "Retrographic sensing for the measurement of surface texture and shape," IEEE Conference on Computer Vision and Pattern Recognition, (2009).
[8] J. Konstantinova, A. Stilli, and K. Althoefer, "Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure," Sensors 17(10), 2337 (2017).
[9] J. S. Heo, J. H. Chung, J. J. Lee, "Tactile sensor arrays using fiber Bragg grating sensors," Sensors and Actuators A: Physical 126(2), 312-327 (2006). 
[10] L. Rayleigh, "XII. On the manufacture and theory of diffraction-gratings," London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47(310), 81-93 (1874).
[11] S. H. Rowe and W. T. Welford, "Surface topography of non-optical surfaces by projected interference fringes," Nature 216(5117), 786-787 (1967).
[12] 潘同宣,「疊紋自動準直儀系統」,國立中央大學,碩士論文,2013年。
[13] Y. C. Park, S. W. Kim, "Determination of two-dimensional planar displacement by moiré fringes of concentric-circle gratings," Applied Optics 33(22), 5171-5176 (1994).
[14] K. S. Chen, T. Y. Chen, C. C. Chuang, and I. K. Lin, "Full-field wafer level thin film stress measurement by phase-stepping shadow moiré/spl acute," IEEE Transactions on Components and Packaging Technologies 27(3), 594-601 (2004).
[15] 張家壽,「應用數位投影疊紋法於微小尺寸表面之量測」,國立台灣大學,碩士論文,2000年。
[16] C. M. Liu, L. W. Chen, "Using the digital phase-shifting projection Moiré method and wavelet transformation to measure the deformation of a PMMA cantilever beam," Polymer Testing 24(5), 576-582 (2005).
[17] H. Ding, R. E. Powell, C. R. Hanna, and I. C. Ume, "Warpage measurement comparison using shadow moiré and projection moiré methods," IEEE Transactions on Components and Packaging Technologies 25(4), 714-721 (2002).
[18] C. Han, B. Han, "Error analysis of the phase-shifting technique when applied to shadow moiré," Applied Optics 45(6), 1124-1133 (2006).

[19] K. J. Gåsvik, Optical metrology, (John Wily & Sons, West Sussex, England, 2002), 3rd Ed., 173-186.
[20] P. S. Huang and S. Zhang, "Fast three-step phase-shifting algorithm," Applied Optics 45(21), 5086-5091 (2006).
[21] H. Du, J. Yu, and S. Zhang, " Improving the measurement accuracy of shadow moiré by three-step random phase-shifting algorithm," Optical Engineering 57(5), 054107 (2018).
[22] E. H. Kim, J. Hahn, H. Kim, and B. Lee," Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection," Optics Express 17(10), 7818-7830 (2009).
[23] B. Pan, Q. Kemao, L. Huang, and A. Asundi," Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry," Optics Letters 34(4), 416-418 (2009).
[24] P. Pinit, E. Umezaki, “Digitally whole-field analysis of isoclinic parameter in photoelasticity for four-step color phase-shifting technique,” Optics and Lasers in Engineering 45(7), 795–807 (2007).
[25] P. Carré,"Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2(1), 13-23 (1966).
[26] P. Hariharan, B. F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Applied Optics 26(13), 2504-2506 (1987).
[27] M. Servin, J. C. Estrada, and J. A. Quiroga," The general theory of phase shifting algorithms," Optics Express 17(24), 21867-21881 (2009). 
[28] M. Wang, L. Ma, D. Li, and J. Zhong, “Subfringe integration method for automatic analysis of Moiré deflection tomography,” Optical Engineering 39(10), 2726-2733 (2000).
[29] Y. Zhu, L. Zhong, X. Lv, Y. Luo, and C. She, "A novel phase unwrapping method based on cosine function," Advanced Materials and Devices for Sensing and Imaging II. Vol. 5633. International Society for Optics and Photonics, 383-393 (2005).
[30] J. M. Huntley, H. Saldner, "Temporal phase-unwrapping algorithm for automated interferogram analysis," Applied Optics 32(17), 3047-3052 (1993).
[31] J. Sun, J. Zhang, Z. Liu, and G. Zhang, "A vision measurement model of laser displacement sensor and its calibration method," Optics and Lasers in Engineering 51(12), 1344-1352 (2013).
[32] 洪佩芳,「高分子光柵應用於太陽光分光元件」,國立中央大學,碩士論文,2016 年。
指導教授 韋安琪 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明