博碩士論文 106328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.144.107.197
姓名 王炳智(Wang, Bing-zhi)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 積層製造自動化粉末回收系統-系統設計及其混合器之優化
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 積層製造近年興盛崛起,尤其在需求高強度,高機械性能的金屬應用場合,能適用金屬材料的粉床熔融成型和指向性能量沈積技術尤其受到矚目,但成本仍為積層製造普及化的障礙。熔融燒結製程所使用之金屬粉末,由於設備成本高,粉末品質之要求高,製作不易,售價居高不下,是積層製造成本難以抑低的一項重要因素。而金屬粉床熔融成型製程之進行,卻極容易形成粉末浪費。在降低成本之觀點,減少粉末消耗量,將原先製程中會直接丟棄的粉末處理回收循環使用,遂成為一重要技術手法,值得產業與學界合作進行研發。
前行研究[1,2]完成自動化粉末回收系統設備之開發,整合四個子系統,涵蓋氣體輸送、粉末供應、粉末篩分以及人機介面,後續仍需有粉末處理方面設備加入系統,並將粉末回送至積層製造主機,始能構成完整之粉末回收處理系統。而這裏新增粉末處理設備中,主要即為混合器和串聯各設備的輸送設備。本研究著重在整體粉末回收系統的整合與串接,完成並應證整體系統的可用性,使粉末回收處理系統可在金屬粉末積層製造整體系統順利發揮作用。
執行面依系統設計概念形成方塊流程圖和程序流程圖,以及加入製程所需設備、控制元件、閥門產出管線儀控圖。進而依圖選取系統中所需各項零組件,並規劃製程產出回收處理系統動作順序與警報通知、金屬粉末回收處理系統閥門運作流程。確認流程之後,產出工程圖與電路圖。最後,以數值模擬分析混合器進氣口之傾斜角度、高度、據中心距離以及進氣速度,尋出最佳混合器結構及操作進氣速度,完成混合器優化。
摘要(英) Additive manufacturing (AM) has been booming in recent years, and it can be regarded as the key technology in the third industrial revolution. Among which, PBF (Powder Bed Fusion) and DED (Directed Energy Deposition) technologies that can be applied to metal parts production are particularly attracting attention in the case that mechanical properties are of high importance. But the cost is still an obstacle to the popularity of additive manufacturing. The metal powder used in AM process is an important factor results in difficult cost-down of AM due to the expensive equipment, high powder quality requirements, difficult production procedure, and then comes the extremely high powder price as a results. On the other hand, the metal PBF process tends easy to waste powder. For the purpose of cutting costs, reducing powder consumption by recycling the powder that was directly discarded in the original manufacturing process has become a high potential technique worthy of researches in innovation.
The previous researches [1,2] completed the development of automated powder recovery system equipment, including four subsystems, pneumatic conveying, powder supply, powder screening, and human-machine interface. Besides that, there still needs powder processing equipment to be added into the system to accomplish a complete powder recovery system that capable to recycle powder back to the AM machine. The new powder processing equipment here is the mixer and the powder conveying equipment connecting equipment together in series. The current research focuses on the integration and link all units of the powder recovery system that can work smoothly together in the additive manufacturing system.
While in the execution of design work, a block flow chart and process flow chart were made firstly. Then the operation units, controlling instrument, valves are put into process flow chart to form the piping and instrumentation diagram required for the process. After choosing the equipment and arrange the processing sequence, alarm system for this powder recycling system, then valves operation sequence diagram can be made. After confirming these objects, the engineering drawing and electrical drawing can be made. The performance of the mixer can be simulated with different air inlet angles, height, latent distance from symmetric plane, and the operation air inlet speed as parameters to get the optimized structure and operation condition of the mixer.
關鍵字(中) ★ 積層製造
★ 粉末回收
★ 混合器
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
附圖目錄 viii
附表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 積層製造技術背景簡介分類與發展回顧 1
1.2 積層製造技術分類與發展回顧 2
1.3 積層製造技術與金屬粉末 5
1.4 金屬粉末回收處理 6
1.5 研究動機 7
1.6 文獻回顧 8
第二章 設計流程與方法 15
2.1 目標 15
2.2 執行流程 17
2.3 工作內容 20
2.3.1 諮詢業界專家 20
2.3.2 程序設計 20
2.3.3相關需求零組件之瞭解與選擇 23
2.4 金屬粉末氣送混合系統理論設計與分析 39
2.4.1 粉顆粒混合/分離理論與機制 39
2.4.2 粉顆粒混合指標 43
2.4.3 粉顆粒模擬方法研究與分析 51
2.4.4 粉末混合系統選用、設計與分析 52
2.4.5 粉末混合系統優化 55
第三章 設計流程與成果 61
3.1 系統流程之發展與建立 61
3.2 產出之設計圖 84
第四章 混合器設計與效能模擬分析 97
4.1 旋風粉末混合器外型尺寸機構設計 97
4.2 旋風粉末混合器幾何外型與網格設定 98
4.2.1幾何外型建立與網格生成 98
4.2.2邊界條件與參數設定 99
4.3 旋風粉末混合器優化模擬分析結果 100
4.3.1 不同的進氣入口傾斜角度 100
4.3.2 不同的進氣入口高度 107
4.3.3 不同的進氣入口水平位置 111
4.3.4 不同的進氣速度 114
4.3.5 模擬分析結果 117
第五章 結論 118
第六章 未來工作與建議 120
參考文獻 121
參考文獻 [1] 蕭宜倫, 2017, 「粉床熔融成型積層製造回收系統之管路二相流模擬分析」 ,國立中央大學機械工程學系
[2] 李貴智, 2019, 「粉床熔融成型積層製造回收系統之系統操作條件對粉末篩分效率影響」 ,國立中央大學機械工程學系
[3] Li, W., Karnati, S., Zhang, Y., Liou, F., “Investigating and eliminating powder separation in pre-mixed powder supply for laser metal deposition process,” Journal of Materials Processing Technology, pp. 294-301, Vol. 254, 2018
[4] https://3dprint.com/258017/interview-with-lockheed-orion-spacecraft-has-200-3d-printed-components/
NASA′s Orion spacecraft ramps 3D-printed parts via Lockheed Martin, Stratasys, Phoenix Analysis & Design. April 17, 2018.
[5] https://3dprintingindustry.com/news/3d-printed-parts-save-lockheed-martin-f-35-program-45-million-144494/
3D printed parts save Lockheed Martin F-35 program $45 million, November 28th, 2018
[6] GE Announces $1.4 Billion Investment: Acquisition of Arcam AB and Concept Laser. Oct 27, 2016
[7] https://www.cfmaeroengines.com/engines/leap/
3D printed. Lighter yet stronger.
[8] https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles
New manufacturing milestone: 30,000 additive fuel nozzles, October 04, 2018
[9] Ardila, L. C., Garciandia, F., González-Díaz, J. B., Álvarez, P., Echeverria, A., Petite, M. M., Deffley, R. and Ochoa, J., “Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting,” Physics Procedia, 56, pp.99-107, 2014.
[10] Jacob G., Brown C., Donmez A., Watson S., Slotwinski J. “Effects of powder recycling on stainless steel powder and built material properties in metal powder bed fusion processes”, National Institute of Standards and Technology, 2017
[11] Santo, N., Kalman, H., “Blinded T-bends flow patterns in pneumatic conveying systems”, Powder Technology, 321, pp. 347-354, 2017.
[12] Kotzur, B. A., Berry, R. J., Zigan, S., García-Triñanes, P., Bradley, M. S. A., “Particle attrition mechanisms, their characterisation, and application to horizontal lean phase pneumatic conveying systems: A review”, Powder Technology, 334, pp. 76-105, 2018.
[13] Kaura,B., Mittalb,A., Mallickb, S. S., Panc, R., Jana, S.,“Numerical simulation of fluidized dense-phase pneumatic conveying of powders to develop improved model for solids friction factor”, Particuology, 2017.
[14] Li, Z., Wei, J., and Yu, B., “Direct Numerical Study on Effect of Interparticle Collision in Particle-Laden Turbulence”, AIAA Journal, 54, pp. 3212-3222, 2016
[15] Wang, Y., Williams, K. C., Jones, M. G., Chen, B., “Gas–solid flow behaviour prediction for sand in bypass pneumatic conveying with conventional frictional-kinetic model”, Applied Mathematical Modelling, 000, pp. 1-19, 2016.
[16] Heng, J., New, T. H., Wilson, P. A., “On the application of an Eulerian granular model towards dilute phase pneumatic conveying”, Powder Technology, 327, pp. 456-466, 2018.
[17] Zhang, X., Zhang, D.F., Wang, A., Geng, Y., “Transportation characteristics of gas–solid two-phase flow in a long-distance pipeline”, Particuology, 21, pp. 196-202, 2015.
[18] Abdel-Hamid, A.A., Mahmoud, N.H., Hamed, M.H., Hussien, A.A., “Gas-solid flow through the mixing duct and tail section of ejectors: Experimental studies”, Powder Technology, 328, pp. 148-155, 2018
[19] Santo, N., Portnikov, D., Tripathi, N.M., Kalman, H., “Experimental study on the particle velocity development profile and acceleration length in horizontal dilute phase pneumatic conveying systems”, Powder Technology, 339, pp. 368-376, 2018
[20] Ammarcha, C., Gatumel, C., Dirion, J.L., Cabassud, M., Berthiaux, H., “Continuous powder mixing of segregating mixtures under steady and unsteady state regimes: Homogeneity assessment by real-time on-line image analysis”, Powder Technology, 315, pp. 39-52, 2017
[21] Toson,P., Siegmann, E., Trogrlic, M., Kureck, H., Khinast, J., Jajcevic, D., Doshi, P., Blackwood, D., Bonnassieux, A., Daugherity, P.D., Am Ende, M.T., “Detailed modeling and process design of an advanced continuous powder mixer”, International Journal of Pharmaceutics, 552, pp. 288-300, 2018.
[22] Gao,Y., Muzzio, F., Ierapetritou, M., “Characterization of Feeder Effects on Continuous Solid Mixing Using Fourier Series Analysis”, AIChE Journal, 2011.
[23] Asachi, M., Nourafkan, E., Hassanpour, A., “A review of current techniques for the evaluation of powder mixing”, Advanced Powder Technology, 2018
[24] Jovanovic, A., Pezo, M., Pezo, L., Levic, L., “DEM/CFD analysis of granular flow in static mixers,” Powder Technology, pp. 240-248, Vol. 266, 2014
[25] Fan, H., Guo, D., Dong, J., Cui, X., Zhang, M., Zhang, Z., “ Discrete element method simulation of the mixing process of particles with and without cohesive inter-particle forces in a fluidized bed,” Powder Technology, pp. 223-231, Vol.327, 2018
[26] Bellon, C., Truffer, C., Steiner, A., Moreillon, A., Nicolay, L., “Mixing effectiveness of a new pneumatic PTS-Batchmixer with an in-line Sampling device,” Advanced Powder Technology, pp. 43-50, Vol. 24, 2013
[27] Xiao, X., Tan, Y., Zhang, H., Jiang, S., Wang, J., Deng, R., Cao, G., Wu, B., “Numerical investigation on the effect of the particle feeding order of mixing using DEM,” Procedia Engineering, pp. 1850-1856, Vol. 102, 2015
[28] 盧祥聖, 2013, 「旋風分離器之田口穩健設計數值模擬」, 遠東科技大學電腦應用工程所
[29] Chu, K.W. , Wang, B., Xu, D.L., Chen, Y.X., Yu, A.B., “CFD-DEM simulation of the gas-solid flow in a cyclone separator”, Chemical Engineering Science, pp. 834-847, Vol. 66, 2011
[30] Hasan, G., Sharifi M., “Numerical and experimental study of an innovative design of elbow in the pipe line of a pneumatic conveying system”, Powder Technology, pp. 171-178, Vol. 331, 2018
[31] Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H. ”Why the Brazil nuts are on top: Size segregation of particulate matter by shaking.” Physical Review Letters, PP. 1038-1040, Vol. 58(10), 1987
[32] Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M., “Brazil-nut effect Size separation of granular particles,” Nature, pp.270, Vol. 414, 2001.
[33] Jain, N., Ottino, J.M., Lueptow, R.M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, pp. 69-81, Vol. 7, 2005.
[34] Liao, C., Hsiau, S.S., Tsai, T.H., Tai, C.H., “Segregation to mixing in wet granular matter under vibration,” Chemical Engineering Science, pp. 1109-1119, Vol. 65, 2010
[35] Remy, B., Khinast, J.G., Glasser, B.J., “Polydisperse granular flows in a bladed mixer: Experiments and simulations of cohesionless spheres.” Chemical Engineering Science, pp. 1811–1824, Vol. 66, 2011
[36] Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M., “Modelling size segregation of granular materials: the roles of segregation, advection and diffusion.” J. Fluid Mech., pp. 252-279, Vol. 741, 2014
[37] Matsumura, S., Richardson, D.C., Michel, P., Schwartz, S.R., Ballouz, R.L., “The Brazil nut effect and its application to asteroids.” MNRAS, pp. 3368–3380, Vol. 443, 2014
[38] Clément, R.T., Stojanova, M., Aharonov, E., ” Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction.” Physical Review E, PP. 022905, Vol. 97(2), 2018
[39] Schröter, M., Ulrich, S., Kreft, J., Swift, J.B., Swinney, H.L., “Mechanisms in the size segregation of a binary granular mixture” Physical Review E, 011307, Vol. 74, 2006
[40] Canul-Chay, G.A., Belmont, P.A., Nahmad-Molinari, Y., Ruiz-Su´arez, J.C., ” Does the Reverse Brazil Nut Problem Exist?” Physical Review Letters, 189601, Vol. 89, 2002
[41] Ristow, G.H., ”Particle mass segregation in a two-dimensional rotating drum.”, Europhysics Letters, pp. 97-101, Vol. 28, 1994
[42] Klein, M., Tsai, L.L., Rosen, M.S., Pavlin, T., Candela, D., Walworth, R.L., “Interstitial gas and density segregation of vertically vibrated granular media,” Physical Review E, 010301, Vol. 74, 2006
[43] Shi, Q.F., Sun, G., Hou, M., Lu, K.Q., “Density-driven segregation in vertically binary granular mixture,” Physical Review E, 061302, Vol. 75, 2007
[44] Sanfratello, L. and Fukushima, E., “Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding,” Granular Matter, pp. 73-78, Vol.11, 2009
[45] Venables, H.J., Wells, J.I., “Powder mixing,” Drug Development and Industrial Pharmacy, pp. 599-612, Vol. 27, 2001
[46] Rhodes, M., 1998, Introduction to Particle Technology. (John Wiley & Sons, London).
[47] Cooke, W., Warr, S., Huntley, J.M. and Ball, R.C., “Particle size segregation in a two-dimentional bed undergoing vertical vibration.” Phys. Rev. E., pp. 2812-2822, Vol. 53, 1996
[48] Knight, J.B., Ehrichs, E.E., Kuperman, V.Y., Flint, Jaeger, H.M and Nagel, S. R., “An experimental study of granular convection,” Phys. Rev. E., pp. 5726-5738, Vol. 54, 1996
[49] Hsiau, S.S. and Tai, C.H., “Dynamic Behavior of Powders in a Vibrating Bed,” Powder Technol. , pp. 221-232, Vol. 139, 2004
[50] Fan, L.T., Chen, S.J., Watson, C.A., “Solid Mixing,” Industrial and Engineering Chemistry, pp.53-69, Vol. 62, 1970
[51] Alhwaige, A.A., Tasirin, S.M., Sowedan, A.M., Daud, W.R.W., “Study The Homogeneity of Mixing a Binary Polyethylene Granular Mixture in Fluidised Bed Mixer,” Proceedings of the World Congress on Engineering and Computer Science, pp. 22-24, 2008
[52] Weidenbaum, S.S., “Mixing of Solids,” Advances in Chemical Engineering, Vol.2, pp. 209-324, 1958
[53] Lacey, P. M. C., “The Mixing of Solid Particles.” Tram. Inst. Chern. Engrs., pp. 53-59, Vol. 21, 1943
[54] Gayle, J. B., Lacey, O. L., and Gary, J. H., “Mixing of Solids-x-quare as a Criterion,” Ind. Eng. Chem., pp. 1279-1282, 1958
[55] Leggatt C. W., “Method of Making the Homogeneity Test,” Assoc. Official Seed Analysis News Letter. Vol. 25, 1951
[56] Lacey P. M. C., “Developments in the theory of particle mixing,” J. Appl. Chem., pp. 257-268, Vol. 4, 1953
[57] Lu, L.S., Hsiau, S.S., “Mixing in a vibrated granular bed: Diffusive and convective effects,” Powder Technol., pp. 31-43., Vol. 184, 2008
[58] Kramer, H.A., “Effect of Grain Velocity and Flow Rate Upon the Performance of a Diverter Type Sampler,” U.S. Dept. Agr., ARS 51-25, 1968
[59] Weidenbaum S.S., Bonilla C.F.A., “A Fundamental Study of the Mixing of Particulate Solids”, Ph.D. Thesis, Columbia University 1953
[60] Chou, S.H., Song, Y.L., Hsiau, S.S., “A study of the mixing index in the solid particles,” KONA Powder and Particle Journal, pp. 275-281, Vol. 34, 2017
[61] Danckwerts, P. V., “The definition and measurement of some characteristic of mixtures,” Appl. Sci. Res., pp. 279-296, Vol. 3, 1952
[62] Cundall, P. A. and Strack, O. D. L, “A discrete numerical model for granular assemblies,” Geotechnique, pp. 47-65, Vol. 29 , 1979
[63] Deliang, S., Watson, L. V., McCarthy, J. J., “Heat transfer in rotary kilns with interstitial gases,” Chem. Eng. Sci., pp. 4506-4516, Vol. 63, 2008
[64] Chaudhuri, B.a, Muzzio, F.J., Tomassone, M.S., “Experimentally validated computations of heat transfer in granular materials in rotary calciners,” Powder Technology, pp. 6-15, Vol. 198, 2010
[65] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980
[66] Cheng, Y., Wei, F., Guo, Y., Jin, Y., “CFD Simulations of Hydrodynamics in the Entrance Region of a Downer,” Chem. Eng. Sci., pp. 1687-1696, Vol. 56, 2001
[67] He, Y. R., Chen, H. S., Ding, Y. L., Lickiss, B., “Solids motion and segregation of binary mixtures in a rotation drum mixer,” Chem. Eng. Res. Des., pp. 963-973, Vol. 85, 2007
[68] Bonamy, D., Chavanis, P.-H., Cortet, P.-P., Daviaud, F., Dubrulle, B., Renouf, M., “Euler-like modelling of dense granular flows: application to a rotating drum,” Eur. Phys. J., pp. 619-627, Vol. 68, 2009
[69] Gidaspow, D., Bahary, M., Jayaswal, U. K., “Hydrodynamic models for gas-liquid-solid fluidization,” American Society of Mechanical Engineers, FED., pp. 117-124, Vol. 185, 1994
[70] ANSYS Meshing User’s Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013.
[71] Huilin, L. and Gidaspow, D., “Hydrodynamic of binary fluidization in a riser: CFD simulation using two granular temperatures,” Chem. Eng. Sci., pp. 3777-3792, Vol. 58, 2003
[72] Lun, C. K. K., Savage, S. B., Jeffery, D. J., Chepurniy, N., “Kinetic theories for granular flow: inelastic particles in coquette flow and slightly inelastic particles in a granular flow field,” Fluid Mech. J., pp. 223-256, Vol. 140, 1984
[73] Schaeffer, D. G., “Instability in the evolution equations describing incompressible granular flow,” J. Diff. Eq., pp. 19-50, Vol. 66, 1987
[74] Richardson, J. R. and Zaki, W. N., “Sedimentation and fluidization: part I. Trans. Inst.,” Chem. Eng. Sci., pp. 35-53, Vol. 32, 1954
[75] Syamlal, M., “The particle-particle drag term in a multiparticle model of fluidized,” Topic report. Springfield: National Technical Information Service, 1987
[76] Bagnold, R.A., “Experiments on a gravity-free dispersion of large solids spheres in a Newtonian fluid under shear,” Proc. R. Soc, pp. 49-63, Vol. A225, 1954
[77] Zang, S.J. and Yu, A.B., “Computational investigation of slugging behavior in gas-fluidised beds,” Powder Technol., pp. 147-165, Vol. 123, 2002
[78] Zhang, K. Zhang, J. Zhang, B., “Experimental and numerical study of fluid dynamic parameters in a jetting fluidized bed of a binary mixture,” Powder Technol., pp. 30-38, Vol. 132, 2003
[79] Syamlal, M. and O’Brien, T.J., “Computer simulation of bubbles in a fluidized bed,” AIChE J., pp. 22-31, Vol. 85, 1989
[80] 陶珍東,鄭少華, 2014, 「粉體工程與設備」第三版,化學工業出版社,北京市
[81] 呂維明,錢義隆,黃孝平,余政靖, 2011 「化工程序設計概論」初版,高立圖書,新北市
指導教授 蕭述三 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明