博碩士論文 106328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.221.187.121
姓名 王證亮(Zheng-Liang Bong)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
(An Experimental Investigation of Pressurized Syngas Solid Oxide Fuel Cell Doped with Ammonia: Cell Performance and Durability Measurements)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文對加壓型合成氣固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)添加氨氣,以觀察氨氣是否可對合成氣(35% H2 + 65% CO) SOFC的碳沉積有抑制效果?碳沉積的發生主要是來自於合成氣的一氧化碳所進行歧化反應(Boudouard reaction),而此反應是放熱反應,故在SOFC相對低溫(500~700oC)環境時合成氣容易發生碳沉積。由過去本實驗室的研究,顯示使用合成氣在操作溫度(T)為750oC和操作壓力(p)為1 atm的條件下,SOFC可穩定操作25小時,並無任何性能衰退的現象。但當在T = 750oC,把操作壓力提升至3 atm時,合成氣SOFC卻只能穩定操作10小時,之後產生嚴重碳沉積,造成電池性能劣化。當p = 1 atm,把操作溫度降低至700oC時,合成氣SOFC僅能穩定操作7個小時,之後即有碳沉積問題之產生。本研究針對SOFC的陽極合成氣燃料中以添加氨氣方式,讓氨可優先佔據鎳陽極觸媒的酸性位點,證實可減少陽極碳沉積形成的速率。本研究使用已建立之雙腔體高溫、高壓爐與電池性能量測平台(含電化學阻抗頻譜量測),在不同T與p的條件下量測添加氨的合成氣鈕扣型陽極支撐電池(Anode-Supported Cell, ASC; 530-μm-Ni-YSZ/3- μm-YSZ/15-μm-LSC-GDC)之電池性能、電化學阻抗頻譜與穩定性。結果顯示,在T = 700oC和p = 1 atm的操作條件下ASC可穩定運作28小時無碳沉積,相較於過去研究,加氨可使穩定操作時間增長。 尤其是在T = 650oC和p = 1 atm時,ASC可以穩定運作長達40個小時,無任何性能衰退的現象。這是因為氨氣的裂解率(裂解出來的產物為氫氣和氮氣)會隨著操作溫度的降低而下降,而在較低溫環境下未經裂解之氨氣的含量比較多,使其足夠用於抑制碳沉積形成的速率。在T = 650oC的操作溫度下,提升操作壓力(p = 3 atm)有助於提升加氨之合成氣ASC的電池性能,可穩定操作約32小時,但之後會產生碳沉積使ASC的性能大幅的衰退。從SEM (Scanning Electron Microscope)與EDX (Energy Dispersive X-Ray)分析發現,在穩定性測試條件為T = 650oC和p = 1 atm、T = 700oC和p = 1 atm以及T = 650oC和p = 3 atm之電池陽極表面的碳原子比例(atomic ratio, At. %)分別為16.08 %、87.23 %以及68.53 %。最後,本論文有兩結論:(1)合成氣加氨有助於減少碳沉積的形成,尤其是在常壓和T = 650oC條件下,加氨抑制碳沉積的效果最為顯著;(2)在高壓操作環境條件不利加氨抑制碳沉積之效果,即使在T = 650oC,顯示以鎳基為陽極觸媒之合成氣SOFC不易於加壓操作條件下進行長時間發電之運轉。以上實驗結果,對合成氣SOFC之碳沉積問題之瞭解應有所助益。
摘要(英) In this study, ammonia is doped into a pressurized syngas-fueled (35% H2 + 65% CO) solid oxide fuel cell (SOFC). The objective is to explore whether can ammonia inhibit the carbon deposition of syngas SOFC? The carbon deposition can be formed when the carbon monoxide in the syngas undergoing the Boudouard reaction that is an exothermic reaction which is prone to occur at low temperature (500~700oC) condition of SOFC. Our previous study showed that the syngas-fueled SOFC can operated stably 25 hour at the operating temperature (T) of 750oC and operating pressure (p) of 1atm, without any carbon deposition. However, at T = 750oC, syngas-fueled SOFC can only operate 10 hour when p increases to 3 atm, then the occurrence of severe carbon deposition results in deterioration of cell performances. When p = 1 atm, syngas-fueled SOFC can only operate 7 hour when T decreased to 700oC, then severe carbon deposition was occurred. In this study, ammonia was doped to the anode syngas fuel, proved that the ammonia can preferentially occupy the acid sites of Ni-anode catalyst resulting in the decreased of the coke formation. Experiments were conducted in an already established high- temperature and high-pressure dual-chamber SOFC facility together with cell performance measuring equipment (including electrochemical impedance spectroscopy). We measured the cell performance, impedance spectra, and durability of the syngas-doped-ammonia-fueled button anode-supported cell (ASC; 530 μm Ni-YSZ/3 μm YSZ/15μm LSC-GDC) under different T and p conditions. Results show that at T = 700oC and p = 1 atm, the syngas-doped-ammonia-fueled ASC can operate stably for 28 hours, without any carbon deposition, also the operating time was longer than the previous study. It was found that the ASC can operate up to 40 hours at T = 650oC and p = 1 atm, without any degradation. This is because the decomposition rate of ammonia to hydrogen and nitrogen will decrease with decreasing the operating temperature, so that there was more residual ammonia left at lower operating temperature (650oC), which was sufficient to occupy the acid sites of Ni-anode catalyst for being able to inhibit the carbon deposition. At T = 650oC, the cell performance of syngas-doped-ammonia-fueled ASC was increased with elevating the operating pressure (p = 3 atm). However, the ASC became vulnerable to carbon deposition after 32 hours operation, resulting in the degradation of cell performance. Scanning electron microscope (SEM) and energy dispersive X-Ray (EDX) analysis showed the carbon atomic ratio (At. %) of the cells’ anode surface after treated at T = 650oC and p = 1 atm, T = 700oC and p = 1 atm, and T = 650oC and p = 3 atm were 16.08 %, 87.23 %, and 68.53 % respectively. In the end, this thesis obtains two conclusions: (1) the doping of ammonia to syngas fuel promotes the reduction of carbon deposition, especially at atmospheric pressure and at T = 650oC conditions, the effect of doped ammonia to the inhibition of carbon deposition was more significant. (2) The higher operating pressure condition was not conducive to the suppression of carbon deposition by doped ammonia, even at T = 650oC, showed that syngas-fueled SOFC which using nickel base as anode catalyst was difficult to work for a long period under high pressure conditions.
關鍵字(中) ★ 加壓型合成氣固態氧化物燃料電池
★ 鈕扣型陽極支撐電池
★ 碳沉積
★ 加氨
★ 酸性位點
關鍵字(英) ★ Pressurized syngas solid oxide fuel cell
★ button anode-supported cell
★ carbon deposition
★ doped-ammonia
★ acid site
論文目次 摘 要--------------i
Abstract----------iii
誌謝---------------v
目錄---------------vi
圖表目錄-----------viii
符號說明-----------x
第一章 前言---------1
1.1 研究動機--------1
1.2 問題所在--------2
1.3 解決方法--------5
1.4 論文綱要--------5
第二章 文獻回顧------7
2.1 SOFC之簡介-----7
2.2 SOFC之類型簡介-8
2.3 SOFC運作原理---9
2.4 SOFC之極化現象-11
2.4.1 活化極化-----12
2.4.2 歐姆極化-----12
2.4.3 濃度極化-----13
2.5 電化學阻抗頻譜與等效電路模組------------14
2.6 合成氣SOFC之碳沉積與穩定性測試相關文獻---17
第三章 實驗設備與量測方法--------------------42
3.1 高壓SOFC實驗量測平台--------------------42
3.2 實驗流程與量測操作參數設定---------------44
第四章 結果與討論----------------------------52
4.1 溫度效應對合成氣加氨之SOFC的電池性能影響--52
4.2 壓力效應對合成氣加氨之SOFC的電池性能影響--53
4.3 合成氣加氨之SOFC穩定性量測---------------54
第五章 結論與未來工作-------------------------65
參考文獻-------------------------------------68
參考文獻 [1] S.C. Singhal, K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applicatons, Elsevier Advanced Technology, New York, 2003.

[2] Q.L. Ma, J.J. Ma, S. Zhou, R.Q. Yan, J.F. Gao, G.Y. Meng, A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte, J. Power Sources 164 (2007) 86-89.

[3] C.C. Liu, S.S. Shy, C.W. Chiu, M.W. Peng, H.J. Chung, Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment, Int. J. Hydrogen Energ. 36 (2011) 8595-8603.

[4] H. Miao, W.G. Wang, T.S. Li, T. Chen, S.S. Sun, C. Xu, Effects of coal syngas major compositions on Ni/YSZ anode-supported solid oxide fuel cells, J. Power Sources, 195 (2010) 2230-2235.

[5] V. Subotic, C. Schluckner, C. Hochenauer, An experimental and numerical study of performance of large planar ESC-SOFCs and experimental investigation of carbon depositions, J. Energy Inst. 89 (2016) 121-137.

[6] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,國立中央大學碩士論文,2017。(http://ir.lib.ncu.edu.tw/handle/987654321/75994)

[7] W. Wang, R. Ran, C. Su, Y.M. Guo, D. Farrusseng, Z.P. Shao, Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes, J. Power Sources 240 (2013) 232-240.

[8] G. Cinti, G. Discepoli, E. Sisani, U. Desideri, SOFC operating with ammonia: Stack test and system analysis, Int. J. Hydrogen Energ. 41 (2016) 13583-13590.

[9] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells, J. Power Sources 365 (2017) 148-154.

[10] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic Influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells, Fuel Cells 15 (2015) 390-397.

[11] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study, Fuel Cells 11 (2011) 581-591.
[12] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of pressure variation on power density and efficiency of solid oxide fuel cells, Electrochim. Acta 66 (2012) 158-163.

[13] P.C. Wu, S.S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850oC, J. Power Sources, 362 (2017) 105-114.

[14] R.O. Hayre, Cha, S.W., Colella, W., PronzJohn, F.B., Fuel Cell Fundamentals, 2nd Ed. John Wiley & Sons Inc., New York, 2009.

[15] University of Cambridge, TLP Libriary, http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php.

[16] M. Mogensen, Jensen, K. V., Jorgensen, M. J., Primdahl, S., Progress in understanding SOFC electrodes, Solid State Ionics 150 (2003) 123-129.

[17] D.H. Jeon, J.H. Nam, C.J. Kim, Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model, J. Electrochem Soc. 153 (2006) A406-A417.

[18] E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651.

[19] W.L. Lundberg, S.E. Veyo, M. D. Moeckel, A high-efficiency solid oxide fuel cell hybrid power system using the Mercury 50 advanced turbines systems, J. Eng. Gas Turb. Power 125 (2002) 51-58.

[20] R.J. Kee, H.Y. Zhu, A.M. Sukeshini, G.S. Jackson, Solid oxide fuel cells: Operating principles, current challenges, and the role of syngas, Combust. Sci. Technol. 180 (2008) 1207-1244.

[21] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, J. Power Sources 177 (2008) 254-261.

[22] M.M. Hussain, X. Li, I. Dincer, A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Power Sources 189 (2009) 916-928.

[23] D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: A review, Fuel Cells 7 (2007) 246-258.

[24] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units, J. Power Sources 154 (2006) 448-455.

[25] J. Hanna, W.Y. Lee, Y. Shi, A.F. Ghoniem, Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels, Prog. Energ. Combust. 40 (2014) 74-111.

[26] 李信宏, 棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,國立中央大學碩士論文,2010。

(http://ir.lib.ncu.edu.tw/handle/987654321/43470)

[27] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energ. Convers. Manage. 48 (2007) 1525-1535.

[28] Q.A. Huang, R. Hui, B.W. Wang, H.J. Zhang, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochim. Acta 52 (2007) 8144-8164.

[29] J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochim. Acta, 51 (2006) 1473-1479.

[30] P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour, J. Electroanal. Chem. 443 (1998) 149-154.

[31] L.Z. Bian, Z.Y. Chen, L.J. Wang, F.S. Li, K.C. Chou, Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2-CO fuels, Int. J. Hydrogen Energ. 42 (2017) 14246-14252.

[32] Z.R. Xu, X.Z. Fu, J.L. Luo, K.T. Chuang, Carbon Deposition on Vanadium-Based Anode Catalyst for SOFC Using Syngas as Fuel, J. Electrochem. Soc. 157 (2010) B1556-B1560.

[33] V. Alzate-Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, J. Power Sources 195 (2010) 1344-1351.

[34] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel, J. Power Sources 161 (2006) 308-322.

[35] J. Xiao, Y.M. Xie, J. Liu, M.L. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, J. Power Sources 268 (2014) 508-516.

[36] H. Miao, G.H. Liu, T. Chen, C.R. He, J. Peng, S. Ye, W.G. Wang, Behavior of anode-supported SOFCs under simulated syngases, J. Solid State Electr. 19 (2015) 639-646.

[37] J. Mermelstein, M. Millan, N. Brandon, The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes, J. Power Sources 195 (2010) 1657-1666.

[38] X.F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2-CO syngas fuels, J. Power Sources 195 (2010) 7264-7267.

[39] O. Costa-Nunes, R.J. Gorte, J.M. Vohs, Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas, J. Power Sources 141 (2005) 241-249.

[40] T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, T. Mori, Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, Appl. Catal. A-Gen. 144 (1996) 111-120.

[41] L.L. Xu, H.L. Song, L.J. Chou, Carbon dioxide reforming of methane over ordered mesoporous NiO-Al2O3 composite oxides, Catal. Sci. Technol. 1 (2011) 1032-1042.

[42] J.J. Guo, H. Lou, L.Y. Mo, X.M. Zheng, The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions, J. Mol. Catal. A-Chem. 316 (2010) 1-7.

[43] R. Baer, Y. Zeiri, R. Kosloff, Hydrogen transport in nickel (111), Phys. Rev. B 55 (1997) 10952-10974.

[44] S.S. Shy, S.C. Hsieh, H.Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, J. Power Sources 396 (2018) 80-87.

[45] G. Cinti, U. Desideri, D. Penchini, G. Discepoli, Experimental Analysis of SOFC Fuelled by Ammonia, Fuel Cells 14 (2014) 221-230.

[46] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells, Acs. Appl. Mater. Inter. 7 (2015) 28701-28707.

[47] 周政憲, 平板式加壓型合成氣固態氧化物燃料電池實驗研究,國立中央大學碩士論文,2018。(http://ir.lib.ncu.edu.tw/handle/987654321/79519)

[48] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources 171 (2007) 169-178.

[49] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics 189 (2011) 74-81.

[50] R. Barfod, M. Mogensen, T. Klemenso, A. Hagen, Y.L. Liu, P.V. Hendriksen, Detailed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc. 154 (2007) B371-B378.

[51] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, Analysis of Impedance Spectra for Segmented-in-Series Tubular Solid Oxide Fuel Cells, J. Electrochem. Soc. 157 (2010) B1858-B1864.

[52] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, Gas Transport Impedance in Segmented-in-Series Tubular Solid Oxide Fuel Cell, J. Electrochem. Soc. 158 (2011) B215-B224.

[53] S. Ishida, S. Imamura, Y. Fujimura, Adsorption of Carbon-Monoxide on Lewis Acid Sites of Alumina, React. Kinet. Catal. L. 43 (1991) 447-452.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2020-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明