博碩士論文 106328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.142.173.227
姓名 龐又齊(Yu-Chi Pang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 中文質子傳輸型固態氧化物燃料電池陽極之研究
(Synthesis and Investigation of Anode for Medium Temperature Proton Exchange Solid Oxide Fuel Cell Research)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要探討利用固相反應法(Solid State Reaction, SSR)製作合金陽極應用在質子傳輸型固態氧化物燃料電池(Proton Conducting Solid Oxide Fuel Cell, P-SOFC)。合金陽極量測則分為成份比例、晶相鑑定、微觀結構、機械性質及電性分析;藉由調整鎳鈷合金(Nickel Cobolt Alloy, NiCo alloy)的煆燒溫度、煆燒時間及改變NiCo合金比例,目標是以少許鈷元素(Cobalt, Co)與鎳元素(Nickel, Ni)置換之陽極達到比傳統以Ni金屬為主之陽極具有較佳之電性、抗碳沉積能力及氧化還原循環穩定性。
研究結果顯示,藉由調整NiCo合金粉末煆燒溫度及煆燒時間會改變NiCo合金晶粒大小、導電度及熱膨脹係數。當Ni0.9Co0.1合金之煆燒溫度為1000 ºC及煆燒時間為3小時,操作溫度為600 ºC時,其導電度為2623 S/cm。選取最佳煆燒溫度、煆燒時間及NiCo成份比例,當Ni : Co莫爾比為9:1時,陽極具有相當優異之導電度及熱膨脹係數,其導電度比傳統以金屬Ni為主之陽極高,當Ni : Co莫爾比為7:3時,其熱膨脹係數為13.6×10-6 K-1、有最佳的抗碳沉積能力及經過氧化還原循環後有最佳機械強度。
摘要(英) In this research, solid-state reaction (SSR) synthesis process is chosen to develop an alloy catalyst as an anode in proton conducting solid oxide fuel cell (P-SOFC). Initially, anode alloy is characterized to identify the ratio of components, phase identification, microstructure, mechanical properties and electrical conductivity. The aim of this research is to synthesize a higher electrical conducting anode catalyst for P-SOFC, when compared to the traditional NiO anode. Incorporation of cobalt in nickel oxide can enhance the electrical properties of anode in P-SOFC. Several variations in the ratio of alloy (Ni : Co) and calcining parameters such as temperature and time would enhance the electrical conductivity, carbon deposition resistance and the redox cycle stability of the catalyst. This is better than the traditional NiO catalyst. The results show that, variation of calcined temperature and calcined time can change the particle size, electrical conductivity and coefficient of thermal expansion (CTE). Initially, we investigated the best appropriate calcination temperature and duration, and then the ratio of Ni : Co is varied. The best carbon deposition resistance, stability in redox cycle and CTE of 13.6×10-6 K-1 is observed for the Ni : Co molar ratio of 7 : 3. The NiCo anode has relatively good electrical conductivity than that of Ni anode (2354 S/cm). This work can help to replace the traditional NiO anode in P-SOFC.
關鍵字(中) ★ 中溫
★ 質子傳導
★ 固態氧化物燃料電池
★ 熱膨脹係數
★ 維克氏硬度
★ 碳沉積
★ 氧化還原循環
關鍵字(英) ★ Intermediate Temperature
★ Proton Conduction
★ Solid Oxide Fuel Cell
★ Coefficient of Thermal Expansion
★ Vickers Hardness
★ Carbon Deposition
★ Redox Cycle
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
一、緒論 1
1-1 前言 1
1-2 固態氧化物燃料電池(SOFC) 2
1-2-1 P-SOFC及O-SOFC 3
1-2-1 P-SOFC工作原理 4
1-3 P-SOFC材料具備之特性 5
1-3-1 P-SOFC電解質 6
1-3-2 P-SOFC陽極材料 9
二、文獻回顧 12
2-1 鋇鈰氧系(BaCeO3-based)陽極材料之穩定性問題 12
2-2 改變煆燒溫度對於合金顆粒的影響 15
2-3 改變合金比例對於陽極材料性質的影響 17
三、實驗方法 21
3-1 實驗製程儀器設備 21
3-1-1 行星式單罐球磨機 21
3-1-2 桌上型油壓機 21
3-1-3 高溫箱型爐 21
3-2 實驗樣品製備流程 21
3-2-1 陽極製備流程 21
3-3 材料分析儀器 23
3-3-1 X光繞射儀(X-Ray Diffraction, XRD) 23
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 24
3-3-3 熱機械分析儀(Thermomechanical Analysis, TMA) 25
3-3-4 維克氏硬度試驗機(Vickers Hardness Testing Machine) 26
3-3-5 波長分散式X光螢光分析儀(Wavelength Dispersive X-ray Fluorescence, WD-XRF) 26
3-3-6 同步熱差分析儀(Simultaneous Thermal Analysis, STA) 27
3-3-7 導電度阻抗儀(Impedance Analyzer) 28
3-3-8 拉曼光譜儀(Raman Spectrometer) 29
3-3-9 元素分析儀(Elemental Analyzer, EA) 30
四、結果與討論 31
4-1 不同煆燒溫度對陽極材料之影響 31
4-1-1 不同煆燒溫度陽極之樣品命名 31
4-1-2 不同煆燒溫度對陽極材料比例、形貌及導電度之影響 31
4-2 不同煆燒時間對陽極材料之影響 35
4-2-1 不同煆燒時間之樣品命名 35
4-2-2 不同煆燒時間對陽極材料比例、形貌及導電度之影響 36
4-2-3 不同煆燒溫度及煆燒時間對陽極晶粒大小、孔隙率及導電度之影響整理 39
4-3 不同比例NiCo合金對陽極材料之影響 40
4-3-1 不同比例NiCo合金之樣品命名 40
4-3-2 不同比例NiCo合金對陽極材料比例、形貌、導電度、硬度及熱膨脹係數之影響 40
4-3-3 不同比例NiCo合金陽極塊材之碳沉積實驗 46
4-3-4 不同比例NiCo合金陽極塊材之氧化還原循環實驗 50
4-3-5 不同合金比例對陽極晶粒大小、孔隙率、導電度、熱膨脹係數、抗碳沉積能力與氧化還原循環耐受性之影響整理 58
五、結論 60
六、未來工作 61
七、參考文獻 62
參考文獻 [1] https://www.audi.com/corporate/en/company.html
[2] http://www.boeing.com/
[3] S. Mclntosh, R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., Vol. 104, No. 10, pp. 4845-4866, 2004.
[4] R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, J. Mater. Chem., Vol. 20, No. 30, pp. 6218-6225, 2010.
[5] S. Primdahl, Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells , University of Twente, Ph.D. Thesis, 1999.
[6] J. Larminie, Dicks A. Fuel cell systems explained, 2nd ed., New York, NY, USA: Wiley, 2003.
[7] S. C. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications: Elsevier, 2003.
[8] L. Malavasi, C. J. Fisher, and M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem. Soc. Rev., Vol. 39, No. 11, pp. 4370-4387, 2010.
[9] E. Fabbri, D. Pergolesi, and E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chem. Soc. Rev., Vol. 39, No. 11, pp. 4355-4369, 2010.
[10] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics, Vol. 52, No. 1-3, pp. 99-104, 1992.
[11] H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, No. 3-4, pp. 299-310, 2004.
[12] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., Vol. 135, No. 2, pp. 529-533, 1988.
[13] K. D. Kreuer, “Proton-conducting oxide”, Annu. Rev. Mater. Res., Vol. 33, No. 1, pp. 333-359, 2003.
[14] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, J. Mater. Sci., Vol. 36, No. 5, pp. 1149-1160, 2001.
[15] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, and P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, Vol. 273, pp. 716-723, 2015.
[16] S. Gopalan, A. V. Virkar, “Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells”, J. Electrochem. Soc., Vol. 140, No. 4, pp. 1060-1065, 1993.
[17] F. Chen, O. T. Sørensen, G. Meng, and D. Peng, “Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting ceramic”, J. Mater. Chem., Vol. 7, No. 3, pp. 481-485, 1997.
[18] Y. M. Guo, Y. Lin, R. Ran, and Z. P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, J. Power Sources, Vol. 193, No. 2, pp. 400-407, 2009.
[19] A. Afif, N. Radenahmad, C. M. Lim, M. I. Petra, M. A. Islam, S. M. H. Rahman, S. Eriksson, and A. K. Azad, “Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3(x = 0.05, 0.1, 0.15, 0.2 & 0.25)”, Int. J. Hydrogen Energy, Vol. 41, No. 27, pp. 11823-11831, 2015.
[20] H. S. Spacil. Electrical device including nickel-containing stabilized zirconia electrode. US patent No. 3, 503, 809, 1970.
[21] C. W. Tanner, K. Z. Fung, and A. V. Virkar, “The effect of porous composite electrode structure on solid oxide fuel cell performance I. theoretical analysis”, J Electrochem Soc., Vol. 144, No. 1, pp. 21-30.
[22] R. J. Gorte, J. M. Vohs, “Nanostructured anodes for solid oxide fuel cells”, Curr. Opin. Colloid Interface Sci., Vol. 14, No. 4, pp. 236-244, 2009.
[23] E. Fabbri, D. Pergolesi, and E. Traversa, “Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells”, Sci. Technol. Adv. Mater., Vol. 11, No. 4, 2010.
[24] T. Matsui, R. Kishida, H. Muroyama, and K. Eguchi, “Comparative study on performance stability of Ni–oxide cermet anodes under humidified atmospheres in solid oxide fuel cells”, J. Electrochem. Soc., Vol. 159, No. 8, pp. F456-F460, 2012.
[25] S. Fang, K. Brinkman, and F. Chen, “Unprecedented CO2 promoted hydrogen permeation in NiBaZr0.1Ce0.7Y0.1Yb0.1O3−δ membrane”, Appl. Mater. Interfaces, Vol. 6, No. 1, pp. 725-730, 2014.
[26] G. C. Mather, F. M. Figueiredo, J. R. Jurado, and J. R. Frade, “Synthesis and characterization of cermet anodes for SOFCs with a proton-conducting ceramic phase”, Solid State Ionics, Vol. 162, pp. 115-120, 2003.
[27] W. G. Coors, A. Manerbino, “Characterization of composite cermet with 68 wt% NiO and BaCe0.2Zr0.6Y0.2O3−δ”, J. Membr. Sci., Vol. 376, No. 1-2, pp. 50-55, 2011.
[28] L. Bi, E. Fabbri, Z. Sun, and E. Traversa, “BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method”, J Electrochem. Soc., Vol. 158, No. 7, pp. B797-B803, 2011.
[29] N. Narendar, G. C. Mather, P. A. Dias, and D. P. Fagg, “The importance of phase purity in Ni–BaZr0.85Y0.15O3−δ cermet anodes–novel nitrate-free combustion route and electrochemical study”, RSC Adv., Vol. 3, No. 3, pp. 859-869, 2013.
[30] L. Chevallier, M. Zunic, V. Esposito, E. Di Bartolomeo, and E. Traversa, “A wet-chemical route for the preparation of Ni–BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs”, Solid State Ionics, Vol. 180, No. 9-10, pp. 715-720, 2009.
[31] B. H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, Vol. 37, No. 23, pp. 18342-18348, 2012.
[32] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, J. Mater. Sci., Vol. 36, No. 5, pp. 1149-1160, 2001.
[33] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, and P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, Vol. 273, pp. 716-723, 2015.
[34] T. Klemensø, C. Chung, P. H. Larsen, and M. Mogensen, “The mechanism behind redox instability of anodes in high-temperature SOFCs”, J. Electrochem. Soc., Vol. 152, No. 11, pp. A1286-A2192, 2005.
[35] M. Pilatie, A. Kaiser, P. H. Larsen, and M. Mogensen, “Dimensional behavior of Ni–YSZ composites during redox cycling”, J. Electrochem. Soc., Vol. 156, No. 3, pp. B322-B329, 2009.
[36] D. Sarantaridis, R. A. Rudkin, and A. Atkinson, “Oxidation failure modes of anode-supported solid oxide fuel cells”, J. Power Sources, Vol. 180, No. 2, pp. 704-710, 2008.
[37] D. Waldbillig, A. Wood, and D. G. Ivey, “Enhancing the redox tolerance of anode-supported SOFC by microstructural modification”, J. Electrochem. Soc., Vol. 154, No. 2, pp. B133-B138, 2007.
[38] A. Faes, A. Hessler-Wyser, A. Zryd, and J. Van Herle, “A review of redox cycling of solid oxide fuel cells anode”, Membranes, Vol. 2, No. 3, pp. 585-664, 2012.
[39] N. Nasani, Z. J. Wang, M. G. Willinger, A. A. Yaremchenko, and D. P. Fagg, “In-situ redox cycling behavior of Ni-BaZr0.85Y0.15O3−δ cermet anodes for protonic ceramic fuel cells”, Int. J. Hydrogen Energy, Vol. 39, No. 34, pp. 19780-19788, 2014.
[40] L. Jia, Z. Lu, J. Miao, Z. Liu, G. Li, and W. Su, “Effects of pre-calcined YSZ powders at different temperatures on Ni–YSZ anodes for SOFC”, J. Alloys Compd., Vol. 414, No. 1-2, pp. 152-157, 2006.
[41] S. Wang, Q. He, and M. Liu, “Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte”, Electrochim. Acta, Vol. 54, No. 15, pp. 3872-3876, 2009.
[42] M. Chen, B. H. Kim, Q. Xu, and B. G. Ahn, “Preparation and electrochemical properties of Ni–SDC thin films for IT-SOFC anode”, J. Mem. Sci., Vol. 334, No. 1-2, pp. 138-147, 2009.
[43] L. O. O. da Costa, A. M. da Silva, F. B. Noronha, and L. V. Mattos, “The study of the performance of Ni supported on gadolinium doped ceria SOFC anode on the steam reforming of ethanol”, Int. J. Hydrogen Energy, Vol. 37, No. 7, pp. 5930-5939, 2012.
[44] N. K. Hoa, H. A. Rahman, and M. R. Somalu, “Effects of NiO loading and pre-calcination temperature on NiO-SDCC composite anode power for low-temperature solid oxide fuel cells”, Ceram. Silikaty, Vol. 62, No. 1, pp. 50-58, 2018.
[45] A. K. Chatterjee, R. Banerjee, and M. Sharon, “Enhancement of hydrogen oxidation activity at a nickel coated carbon beads electrode by cobalt and iron”, J. Power Sources, Vol. 137, No. 2, pp. 216-221, 2004.
[46] C. K. Cho, B. H. Choi, and K. T. Lee, “Effect of Co alloying on the electrochemical performance of Ni–Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells”, J. Alloys Compd., Vol. 541, pp. 433-439, 2012.
[47] J. Ayawannaa, D. Wattanasiriwech, S. Wattanasiriwecha, and K. Satob, “Electrochemical performance of Ni1-xCox-GDC cermet anodes for SOFCs”, Energy Procedia, Vol. 34, pp. 439-448, 2013.
[48] R. Nishida, P. Puengjinda, H. Nishino, K. Kakinuma, M. E. Brito, M. Watanabe, and H. Uchida, “High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni–Co dispersed ceria hydrogen electrodes”, Rsc Adv., Vol. 4, No. 31, pp. 16260-16266, 2014.
[49] T. Guo, X. Dong, M. M. Shirolkar, X. Song, M. Wang, L. Zhang, M. Li, and H. Wang, “Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells”, ACS Appl. Mater. Interfaces, Vol. 6, No. 18, pp. 16131-16139, 2014.
[50] J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques”, Int. J. Hydrogen Energy, Vol. 42, No. 14, pp. 9219-9229, 2017.
[51] W. Nicharee, S. Chaianansutcharit, and K. Sato, “Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells”, MATEC Web of Conferences, Vol. 130, Article No. 03005, 2017.
[52] G. Ding, T. Gan, J. Yu, P. Li, X. Yao, N. Hou, L. Fan, Y. Zhao, and Y. Li, “Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol”, Catal. Today, Vol. 298, pp. 250-257, 2017.
[53] http://www.dengyng.com.tw/htm/dy_p10.htm.
[54] 凌永健,王治平,汪建民主編,材料分析,初版,中國材料科學會,新竹市,民國七十七年。
[55] https://www.rigaku.com/en/products/xrf/primus2.
[56] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-fluorescence/what-is-xrf.html.
[57] https://www.linseis.com/en/products/simultaneous-thermal-analysis/sta-pt-1000/.
[58] https://www.hic.ch.ntu.edu.tw/EA/ea_Reference.html#top.
[59] Y. H. Lee, H. Sumi, H. Muroyama, T. Matsui, and K. Eguchi, “Influence of anode thickness on cell performance in internal reforming operation of SOFCs”, ECS Trans., Vol. 35, No. 1, pp. 1641-1646, 2011.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明