博碩士論文 106328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.236.231.61
姓名 許晉榮(Chin-Jung Hsu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能
(The study on the ultra-clean graphene field effect transistor (FET) to improve the performance of the gene sensor)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究
★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究
★ 有效披覆黑磷烯的穩定性之研究★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction
★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鼻咽癌的發病機制被認為與EBV(Epstein-Barr virus)病毒相關,因此目前多藉由針對EBV 抗體做早期篩選及MRI 和PET 進行病灶評估和追蹤有否局部復發或遠端轉移。此外,近期技術也利用聚合酶鏈反應(PCR)檢測血漿中EBV DNA,這被認為是有效監控鼻咽癌復發或轉移的方法。然而,現有的這些檢測方式,各有些缺點,如:需一定量的血液檢體(EBV抗體及EBV DNA)、檢測費用相對高(MRI、PET)、檢測敏感度低(EBV 抗體)與耗時(EBV DNA)、昂貴檢測設備(MRI、PET)等,因此需要有突破性的感測方法來解決此瓶頸。石墨烯是一種單原子層的碳材料,具有優異的導電性,其組成原子皆裸露於環境,被廣泛用於生醫感測元件,包含DNA、蛋白質、細菌、神經細胞等,其感測原理是藉由在石墨烯接枝探測分子,當待測檢體吸附後,造成電荷轉移至石墨烯,因石墨烯的優異導電性,即便是單一分子的吸附,都能產生可解析的訊號響應,因此發展為高敏感性的感測平台,藉此感測分子的類別與其濃度。其優點是可達到無標記化的直接量測,並以電訊號而達到迅速感測。然而,石墨烯的結晶品質、導電性和表面潔淨度,攸關感測效能,而目前高潔淨與高品質石墨烯製備仍是一大瓶頸。本研究專注於潔淨度對於石墨烯檢測效能之影響因子,將建立一種場效電晶體式的石墨烯DNA 感測晶片,本次利用高潔淨度表面,比習用的製程製備的石墨烯之感測度提升了95 %和敏感度提升了82 %,在可靠度誤差值僅有0.0272,其在專一性上有極佳的性能,在量測不匹配(HPV-18 DNA) 10 nM雜交時的狄拉克點的位移變化量,小於匹配(EBV DNA) 1 pM雜交後產生的狄拉克點的位移,更是與雜交後的位移量相差8.2倍。
摘要(英) The pathogenesis of nasopharyngeal carcinoma is thought to be related to EBV (Epstein-Barr virus). Currently, anti-EBV antibody was widely used for early screening of NPC cases, and MRI and PET are used for evaluation of the lesion and also for monitoring whether there is local recurrence or distant metastasis, In addition, recent technology also utilizes polymerase chain reaction (PCR) in detection of plasma EBV DNA, which is thought to be an effective way to monitor the recurrence or metastasis of NPC. However, the current detection methods show several shortcomings respectively, such as the need for adequate volume of blood (for both anti-EBV antibody or EBV DNA), relatively high costs (MRI and PET), low detection sensitivity (anti-EBV antibody) and time-consuming (EBV DNA), as well as the expensive equipment (MRI、PET).
Thus, it is important to find out a breakthrough sensing method to solve these issues. Graphene is a single atom layered material, which shows excellent electrical conductivity and its constituent atoms are exposed to the environment, allowing it been widely used in bio-/medical sensors, including DNA, protein, bacteria, nerve cells etc. The principle of this sensing mechanism is due to the significant charge transfer from adsorbed biomolecules to graphene. Because of the excellent conductivity of graphene, even the adsorption of a single molecule, resulting in an analytical response of the electrical signal. Therefore, this is beneficial for developing a highly sensitive sensing platform, where the sensing bio-specious and its concentration could be identified.

The graphene-based sensing platform shows the unique advantages that it can achieve a label-free detection and rapid analysis due to the use of electrical signals. However, the graphene crystallinity, conductivity and surface cleanliness of graphene have a critical effect on sensing performance, and the current high purity and high-quality graphene preparation are still challenging. This study the cleanliness on graphene detection performance and will establish a field-effect transistor-type graphene DNA sensor. This study, using the ultra-clean surface is used to increase the conventional process by 95 % and the sensitivity is improved by 82 %. The error value is only 0.0272, which has excellent performance in specificity. and there is excellent performance in specificity, the maximum concentration of mismatch DNA (10 nM) Dirac point variation less than the minimum complementary DNA concentration (1 pM).
關鍵字(中) ★ 超潔淨
★ 基因感測器
★ 石墨烯
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1-1前言 1
第二章、文獻回顧 3
2-1石墨烯的簡介及特性 3
2-2鼻咽癌簡介 7
2-3 生物偵測元件 8
2-4轉印 16
2-4-1濕式轉印 16
2-4-2 乾式轉印 19
2-4-3直接轉印於目標基板 21
2-5研究動機及目的 23
第三章、實驗方法、流程及機台介紹 24
3-1元件製備、分析流程與結構圖 24
3-2實驗藥品及材料 25
3-3實驗機台介紹 26
3-3-1常壓化學氣相沈積系統 (Atmospheric Pressure Chemical Vapor Deposition, AP-CVD) 26
3-3-2拉曼光譜儀 (Raman Spectroscopy, Raman) 27
3-3-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 31
3-3-5四點探針 (Four-point probe) 32
3-2-6 電壓電流量測系統(I-V system) 33
3-4實驗方法 34
3-4-1清洗SiO2/Si基板 34
3-4-2成長石墨烯 34
3-4-3濕式蝕刻轉印 Wet etching transfer(Wet transfer) 36
3-4-4捲對捲乾式轉印 Roll-to-roll dry transfer methods (R2R) 37
3-4-5電化學輔助剝離轉印 Dry transfer and stripping by electrolysis (DSE) 38
3-4-5蒸鍍電極 39
3-4-6固定化DNA與雜合EBV和HPV-18 40
第四章、實驗結果與討論 41
4-1常壓化學氣相沈積成長石墨烯特性分析 41
4-2定義表面完整性(Surface integrity)及表面潔淨度(Surface cleanliness ) 43
4-3探討轉印對石墨烯潔淨度與完整性 44
4-4探討生物晶片場效電晶體施加偏壓對漏電流之影響 51
4-4-1閘極偏壓對漏電流之影響 51
4-4-2源極汲極偏壓對漏電流之影響 52
4-5探討轉印對石墨烯潔淨度與生物晶片場效電晶體訊號 53
4-6固定化探針DNA於石墨烯之電訊號探討 56
4-7雜合不同濃度EBV DNA之生物晶片元件探討 57
4-7-1探討單層石墨烯生物晶片元件不同濃度EBV DNA 57
4-7-2探討單層石墨烯與多層石墨烯生物晶片元件不同濃度EBV DNA 60
4-7-3探討多層石墨烯生物晶片元件不同濃度EBV DNA 62
4-7-4探討潔淨度對生物晶片元件不同濃度EBV DNA影響 64
4-7-5探討潔淨度對敏感度與可靠度之影響應用於生物晶片元件 65
4-8 雜合不匹配 DNA(HPV-18)不同濃度探討生物晶片元件的專一性 68
第五章、結論 71
第六章、未來展望 72
參考文獻 73
參考文獻 1. Le, J.D., et al., DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Letters, 2004. 4(12): p. 2343-7.
2. Patolsky, F., G. Zheng, and C.M. Lieber, Nanowire-based biosensors. Anal Chem, 2006. 78(13): p. 4260-9.
3. Deng, P., Y.K. Lee, and P. Cheng, Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors. Biosens Bioelectron, 2006. 21(8): p. 1443-50.
4. Mohanty, N. and V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters, 2008. 8(12): p. 4469-76.
5. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
6. Lin, J., et al., Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small, 2010. 6(10): p. 1150-5.
7. Pumera, M., "Graphene in biosensing. Materials today, 2011. 14.7: p. 308-15.
8. Rafiee-Pour, H.A., M. Behpour, and M. Keshavarz, A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron, 2016. 77: p. 202-7.
9. Tao, Q. and A.T. Chan, Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med, 2007. 9(12): p. 1-24.
10. Chou, J., et al., Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck, 2008. 30(7): p. 946-63.
11. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p. 183.
12. Zhou, Y.S., et al., Laser-assisted nanofabrication of carbon nanostructures. Journal of Laser Applications, 2012. 24(4).
13. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308.
14. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-8.
15. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Lett, 2008. 8(3): p. 902-7.
16. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
17. Park, H., et al., Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett, 2013. 13(1): p. 233-9.
18. Núñez, C.G., et al., Energy-Autonomous, Flexible, and Transparent Tactile Skin. Advanced Functional Materials, 2017. 27(18).
19. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5(7): p. 487-96.
20. Shao, Y.Y., et al., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010. 22(10): p. 1027-36.
21. Yi, M. and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 2015. 3(22): p. 11700-15.
22. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777): p. 1191-6.
23. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
24. Ciesielski, A. and P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 2014. 43(1): p. 381-98.
25. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339.
26. Su, C.-Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011. 5(3): p. 2332-39.
27. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-14.
28. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
29. Wang, G., et al., Direct Growth of Graphene Film on Germanium Substrate. Scientific Reports, 2013. 3: p. 2465.
30. Cho, W.C., Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer, 2007. 6: p. 1.
31. CJ, L.J., Nasopharyngeal Cancer: Multidisciplinary Management Springer. 2010.
32. Lee, Y.C., et al., Effect of Epstein-Barr virus infection on global gene expression in nasopharyngeal carcinoma. Funct Integr Genomics, 2007. 7(1): p. 79-93.
33. Chen, X., et al., Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation. BMC Genomics, 2008. 9: p. 322.
34. Wang, Y., et al., Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol, 2011. 29(5): p. 205-12.
35. Chauhan, N., T. Maekawa, and D.N.S. Kumar, Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. Journal of Materials Research, 2017. 32(15): p. 2860-82.
36. Liu, Y., et al., Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010. 26(9): p. 6158-60.
37. Huang, K.J., et al., Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces, 2011. 82(2): p. 543-9.
38. Guo, S.-R., et al., Label Free DNA Detection Using Large Area Graphene Based Field Effect Transistor Biosensors. Journal of Nanoscience and Nanotechnology, 2011. 11(6): p. 5258-63.
39. Bingjie Cai, S.W., Le Huang, Yong Ning, Zhiyong Zhang,and Guo-Jun Zhang, Ultrasensitive Label-Free Detection of PNADNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. acsnano, 2014. 8: p. 2632–8.
40. Stine, R., et al., Real-time DNA detection using reduced graphene oxide field effect transistors. Adv Mater, 2010. 22(46): p. 5297-300.
41. Wehling, T.O., et al., Molecular doping of graphene. Nano Lett, 2008. 8(1): p. 173-7.
42. Xia, J.L., et al., Effect of top dielectric medium on gate capacitance of graphene field effect transistors: implications in mobility measurements and sensor applications. Nano Lett, 2010. 10(12): p. 5060-4.
43. Chen, T.Y., et al., Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron, 2013. 41: p. 103-9.
44. Minot, E.D., et al., Carbon nanotube biosensors: The critical role of the reference electrode. Applied Physics Letters, 2007. 91(9).
45. Kim, T., et al., Electrochemical capacitances of well-defined carbon surfaces. Langmuir, 2006. 22(22): p. 9086-8.
46. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-63.
47. Zhang, Z.K., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017. 8: p. 9.
48. Hong, J.Y., et al., A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Advanced Materials, 2016. 28(12): p. 2382-92.
49. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-8.
50. Yoon, T., et al., Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process. Nano Letters, 2012. 12(3): p. 1448-52.
51. Yang, S.Y., et al., Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small, 2015. 11(2): p. 175-81.
52. Kim, J., et al., Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science, 2013. 342(6160): p. 833-6.
53. Lee, J.-H., et al., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014. 344(6181): p. 286-9.
54. Kang, J., et al., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano, 2012. 6(6): p. 5360-5.
55. Bongkyun, J., et al., Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017. 4(2): p. 024002.
56. Chen, T.L., et al., Nanopatterned graphene on a polymer substrate by a direct peel-off technique. ACS Appl Mater Interfaces, 2015. 7(10): p. 5938-43.
57. Wang, X., et al., Direct delamination of graphene for high-performance plastic electronics. Small, 2014. 10(4): p. 694-8.
58. Marta, B., et al., Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science, 2016. 363: p. 613-8.
59. Juang, Z.Y., et al., Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon, 2010. 48(11): p. 3169-74.
60. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett, 2015. 15(6): p. 4206-13.
61. Lock, E.H., et al., High-quality uniform dry transfer of graphene to polymers. Nano Lett, 2012. 12(1): p. 102-7.
62. Fechine, G.J.M., et al., Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon, 2015. 83: p. 224-31.
63. Yoon, T., et al., Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett, 2012. 12(3): p. 1448-52.
64. Na, S.R., et al., Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects. ACS Nano, 2015. 9(2): p. 1325-35.
65. Wang, R., et al., Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Appl Mater Interfaces, 2016. 8(48): p. 33072-33082.
66. Banszerus, L., et al., Dry transfer of CVD graphene using MoS2-based stamps. physica status solidi (RRL) - Rapid Research Letters, 2017. 11(7): p. 1700136.
67. Gupta, P., et al., A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Sci Rep, 2014. 4: p. 3882.
68. Schmitz, M., et al., High mobility dry-transferred CVD bilayer graphene. Applied Physics Letters, 2017. 110(26): p. 263110.
69. Pizzocchero, F., et al., Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015. 85: p. 397-405.
70. Luo, D., et al., Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017. 29(10): p. 4546-56.
71. Chandrashekar, B.N., et al., Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Adv Mater, 2015. 27(35): p. 5210-6.
72. Wang, M.C., et al., A sustainable approach to large area transfer of graphene and recycling of the copper substrate. J. Mater. Chem. C, 2017.
指導教授 蘇清源 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明