博碩士論文 106328016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.234.214.179
姓名 楊佳翰(Chia-Han Yang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
(Study of microstructure and electrochemical properties of zirconium-doped barium cerium oxide)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討改變鈰與鋯的比例,以研究不同鋯摻雜比例之鋇鈰釔氧化物微觀結構與電學特性之間的關係。本研究利用固相反應法成功製備BaCe0.8-xZrxY0.2O3-δ (BCZYx, x=0.1~0.5)電解質粉末,隨著Zr摻雜比例增加,鈣鈦礦主峰的XRD衍射角度增加,表明Zr成功摻雜至BaCeYO3樣品中。由SEM微觀結構顯示隨著鋯摻雜比例的增加,晶粒大小會隨之減小,此結果會造成鋇鈰氧化物之晶界長度增長,導致晶界阻抗增加。在質子傳導率的結果表明,隨著Zr比例的提升而增加,當Zr摻雜比例為0.3時,在700 oC會有最高之質子傳導率0.010 S/cm,但是當鋯摻雜比例為0.4之後傳導率則開始減少,此原因是由於載子濃度、晶體結構隨著Zr摻雜比例的不同,而有所變化。於加濕氫氣下傳導率結果表明,其趨勢與未加濕時一致,BCZY0.3在700 oC亦有最高之質子傳導率0.014 S/cm,此結果亦證明加濕氣氛可有助提升質子傳導率。本研究亦使用Electron back scattered diffraction (EBSD)鑑定其不同樣品之晶體結構,映像圖結果表明所有樣品皆顯示正交晶體具有最高之比例。此外,本研究利用不同粒徑粉末制備BCZY0.3電解質,從性能結果表明,隨著使用鋯珠尺寸減小,有助於提升電解質緻密性,並且使用1 mm鋯珠所製備之單電池於700 oC時量測到最高功率密度84 mW/cm2。
摘要(英) This study explores the relationship between the ratio of cerium and zirconium to study the relationship between the microstructure and electrical properties of barium cerium oxide with different zirconium doping ratios. In this study, BaCe0.8-xZrxY0.2O3-δ (BCZYx, x=0.1~0.5) electrolyte powder was successfully prepared by solid state reaction method. As the increase of Zr doping ratio, the XRD diffraction angle of the main peak of perovskite increased, indicating Zr successfully doped into the BaCeYO3. The SEM microstructure shows that as the Zr doping ratio increases, the grain size decreases, causing increase the grain boundary length of the barium cerium oxide, resulting in increase grain boundary impedance. The proton conductivity results show that as the Zr ratio increases, the highest proton conductivity is 0.010 S/cm at 700 °C when the Zr doping ratio is 0.3. But when the zirconium doping ratio increase to 0.4, the conductivity begins to decrease. The reason for this is because the carrier concentration and crystal structure vary with the Zr doping ratio. The conductivity results under humidified hydrogen show that the trend is consistent with that of non-humidification. BCZY0.3 also has the highest proton conductivity of 0.014 S/cm at 700 °C. This result also proves that the humidified atmosphere can enhance the proton conduction. In this study, Electron back scattered diffraction (EBSD) was also used to identify the crystal structure of different samples. The results of the mapping showed that all samples had the highest proportion of orthorhombic crystals. In addition, in this study, BCZY0.3 electrolyte was prepared by using different particle size powders. The performance results show that as the size of the zirconium beads used is reduced, it contributes to the improvement of electrolyte density, and the use of 1 mm zirconium beads of the electrolyte has a maximum power density of 84 mW/cm2 at 700 oC.
關鍵字(中) ★ 質子傳導型氧化物燃料電池
★ 電解質
★ 質子傳導性
★ Electron Backscattered Diffraction
關鍵字(英) ★ Proton conducting oxide fuel cell
★ Electrolyte
★ Proton conductivity
★ Electron Backscattered Diffraction
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章、緒論 1
1.1前言 1
1.2文獻回顧與研究目的 3
第二章、實驗原理 9
2-1 固態氧化物燃料電池(SOFC) 9
2-1-1 固態氧化物燃料電池之原理及介紹 9
2-1-2 固態氧化物燃料電池之優點 12
2-1-3 固態氧化物燃料電池之結構 12
2-2 固態氧化物燃料電池電解質材料 16
2-2-1 螢石(Fluorite)結構 16
2-2-2 鈣鈦礦(Perovskite)結構與性質 18
2-2-3 質子傳輸型電解質材料 19
2-2-4 質子傳輸機制 21
2-3 電解質粉末合成方法 22
2-3-1 燃燒法(Combustion) 22
2-3-2 固態反應法(Solid state reaction, SSR) 22
2-3-3 水熱法(Hydrothermal method) 23
2-3-4 溶膠-凝膠法(Sol-gel method) 23
2-3-5 共沉澱法(Co-precipitation method) 24
2-4 粉末燒結理論 24
2-4-1 燒結之擴散機制 25
2-4-2 燒結之過程 25
2-5 電化學分析原理 28
2-5-1 電化學之直流電極化曲線(I-V curve)原理 28
第三章、實驗方法 32
3-1 實驗藥品 32
3-2 實驗步驟 32
3-2-1 BaCe0.8-XZrXY0.2O3-δ粉末合成 34
3-2-2 單電池樣品製備 34
3-3 實驗架設與儀器 36
3-3-1 X光粉末繞射儀(X-ray diffraction, XRD) 36
3-3-2 掃描式電子顯微鏡(Scanning electron microscope, SEM) 37
3-3-3 導電性量測(Conductivity) 37
3-3-4 電子背向散射繞射儀(Electron back scatter diffraction, EBSD) 38
3-3-5 電化學性能及阻抗測試平台 39
第四章、實驗結果與討論 40
4-1 材料性質分析 40
4-1-1 BCZY電解質之XRD形貌及微觀結構之分析 40
4-1-2 BCZY電解質之表面形貌 41
4-1-3 不同氣氛下之導電性 42
4-2 晶體結構對傳導性之影響 47
4-2-1 晶體結構與質子導電性之探討 49
4-3 不同粒徑與電池性能之關係 52
4-3-1 不同粉末粒徑與樣品晶粒之關係 52
4-3-2 單電池I-V性能量測與傳導率量測 57
第五章、結論 61
第六章、未來規劃 62
參考文獻 63
參考文獻 [1] C. Song, “Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century”, Catal. Today, Vol. 77, pp. 17-49, 2002.
[2] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, “A comprehensive review on PEM water electrolysis”, Int. J. Hydrogen Energy, Vol. 38, pp. 4901-34, 2013.
[3] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philos. Mag. 3, Vol. 14, pp. 127-30, 1839.
[4] G. Hoogers, “Fuel cell technology handbook. CRC press”, 2002.
[5] M. Hung, H. W. Peng, S. L. Zheng, C. P. Lin, J. S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte”, J. Power Sources, Vol. 193, pp. 155-59, 2009.
[6] A, Weber, E. I. Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, J. Power Sources, Vol. 127, pp.273-83, 2004.
[7] T. Norby, “Proton conductivity in perovskite oxides”, Fuel Cells and Hydrogen Energy, pp. 217-41, 2009.
[8] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, Vol. 77, pp. 289-98, 1995.
[9] S. Gopalan, A. V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells”, J. Electrochem. Soc., Vol. 140, pp. 1060-65, 1993.
[10] K. Xie, R. Yan, X. Liu, “Stable BaCe0.7Ti0.1Y0.2O3−δ proton conductor for solid oxide fuel cells”, J Alloys Compd, Vol. 479, pp. 40-42, 2009.
[11] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras, “Sulphur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials”, J. Power Sources, Vol.273, pp. 716-23, 2015.
[12] K. H. Ryu, S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO –BaZrO solid solutions”, Solid State Ionics, Vol. 125, pp. 355-67, 1999.
[13] J. Li, J. L. Luo, K. T. Chuang, A. R. Sanger, “Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2”, Electrochim. Acta, Vol. 53, pp. 3701-07, 2008.
[14] S. W. Lee, C. J. Tseng, J. K. Chang, K. R. Lee, C. T. Chen, I. M. Hung, S. L. Lee, J. C. Lin, “Synthesis and characterization of Ba0.6Sr0.4Ce0.8−xZrxY0.2O3−δ proton-conducting oxides for use as fuel cell electrolyte”, J Alloys Compd, Vol. 586, pp. 506-10, 2014.
[15] Z. Zhong, “Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, Vol. 178, pp. 213-20, 2007.
[16] M. Hakim, C. Y. Yoo, J. H. Joo, J. H. Yu, “Enhanced durability of a proton conducting oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte”, J. Power Sources, Vol. 278, pp. 320-24, 2015.
[17] E. Fabbri, A. D′Epifanio, E. D. Bartolomeo, S. Licoccia, E. Traversa, “Tailoring the chemical stability of Ba(Ce0.8 − xZrx)Y0.2O3 − δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, Vol. 179, pp. 558-64, 2008.
[18] Y. Guo, Y. Lin, R. Ran, Z. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, J. Power Sources, Vol. 193, pp. 400-07, 2009.
[19] P. Sawant, S. Varma, B. N. Wani, S. R. Bharadwaj, “Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC”, Int. J. Hydrogen Energy, Vol. 37, pp. 3848-56, 2012.
[20] K. Takeuchi, C. K. Loong, J. W. Richardson Jr., J.Guan, S. E. Dorris, U. Balachandran, “The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping”, Solid State Ionics, Vol. 138, pp. 63-77, 2000.
[21] S. C. Singhal, “Advances in solid oxide fuel cell technology”, Solid State Ionics, Vol. 135, pp. 305-13, 2000.
[22] W. J. Quadakkers, J. P. Abellan, V. Shemet, L. Singheiser, “Metallic interconnectors for solid oxide fuel cells - A review”, Mater. High Temp., Vol. 20, pp. 115-27, 2003.
[23] D. J. L. Brett, A. Atkinbson, N. P. Brandon, S. J. Skinner “Intermediate temperature solid oxide fuel cells”, Chem. Soc. Rev., Vol. 37, pp. 1568-78, 2008.
[24] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochem. Commun., Vol. 13, pp. 959-62, 2011.
[25] L. Bi, E. Fabbri, E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochem. Commun., Vol. 16, pp. 37-40, 2012.
[26] B. H. Rainwater, M. Liu, M. Liu “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, Vol. 37, pp. 37-40, 2012.
[27] K. Xie, R. Q. Yan, and X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochem. Commun., Vol. 11, pp. 1618-22, 2009.
[28] N. Soltani, L. H. Arcos, A. Bahrami, J. C. Carvayar, “Structural changes in NiO-Ce0.8Sm0.2O2−x anode under reducing atmosphere”, Mater. Charact., Vol. 150, pp. 8-12, 2019.
[29] H. Ding, X. Xue, X. Liu, G. Meng, “High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm0.5Sr0.5CoO3−δ perovskite cathode”, J Alloys Copmd, Vol. 494, pp. 233-35, 2010.
[30] Y. Li, J. W. Cai, J. A. Alonso, H. Q. Lian, X. G. Cui, J. B. Goodenough, “Evaluation of LaNi0.6M0.4O3 (M = Fe, Co) cathodes in LSGM-electrolyte-supported solid-oxide fuel cells”, Int. J. Hydrogen Energy, Vol. 42, pp. 27334-342, 2017.
[31] C. Sun, R. Hui, J. Roller, “Cathode materials for solid oxide fuel cells: a review”, J. Solid State Electrochem., Vol. 14, pp. 1125-44, 2010.
[32] J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev , A. Demin, P. Tsiakaras, “BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells”, Electrochim. Acta, Vol. 251, pp. 554-61, 2017.
[33] H. Shimada, T. Yamaguchi, H. Sumi. K. Nomura, Y. Yamaguchi, Y. Fujishiro, “Improved transport property of proton-conducting solid oxide fuel cell with multi-layered electrolyte structure”, J. Power Sources, Vol. 364, pp. 458-64, 2017.
[34] H. U.Anderson, “Review of p-type doped perovskite materials for SOFC and other applications”, Solid State Ionics, Vol. 52, pp.33-41, 1992.
[35] V. V. Kharton, F. M. B. Marques, A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review”, Solid State Ionics, Vol. 174, pp. 135-149, 2004.
[36] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, J. Mater. Sci., Vol. 36, pp. 1149-60, 2001.
[37] L. Li, J. C. Nino, “Ionic conductivity across the disorder-order phase transition in the SmO1.5-CeO2 system”, J. Eur. Ceram. Soc., Vol. 32, pp. 3543-50, 2012.
[38] A. Arabacı, M. F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceram. Int., Vol. 38, pp. 6509-15, 2012.
[39] H. Inaba, H. Tagawa, “Ceria-based Solid Electrolytes”, Solid State Ionics, Vol. 83, pp. 1-16, 1996.
[40] S. C. Singhal, K. Kendall, “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, 2003.
[41] T. Takahashi, H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Convers., Vol. 11, pp. 105-11, 1971.
[42] K. D. Kreuer, “Proton-Conducting Oxides”, Annu. Rev. Mater. Sci., Vol. 33, pp. 333-59, 2003.
[43] X. Chi, Z. Wen, J. Zhang, Y. Liu, “A novel facile way to synthesize proton-conducting Ba(Ce, Zr, Y)O3 solid solution with improved sinterability and electrical performance”, J. Eur. Ceram. Soc., Vol. 35, pp. 2109-17, 2015.
[44] N. Agmon, “The Grotthuss mechanism”, Chem. Phys. Lett., Vol. 244, pp. 456-62, 1995.
[45] R. Hempelmann, “Hydrogen diffusion mechanism in proton conducting oxides”, Physica B., Vol. 226, pp. 72-77, 1996.
[46] Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong, S. Ramanathan, “Strongly correlated perovskite fuel cells”, Int. J. Sci., Vol. 534, p.p. 231-34, 2016.
[47] W. Zhou, Z. P. Shao, R. Ran, H. X. Gu, W. Q. Jin, N. P. Xu, “LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, J. Am. Ceram. Soc., Vol. 91, pp.1155-62, 2008.
[48] N. Nasani , P. A. N. Dias, J. A. Saraiva, D. P. Fagg, “Synthesis and conductivity of Ba(Ce,Zr,Y)O3-δ Ld electrolytes for PCFCs by new nitrate-free combustion method”, Int. J. Hydrogen Energy, Vol. 38, pp. 1-10, 2013.
[49] K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, p.p. 91-98, 2000.
[50] W. Zheng, C. Liu, Y. Yue, W. Pang, “Hydrothermal synthesis and characterization of BaZr1 − xMxO3 − α (M = Al, Ga, In, x ≤ 0.20) series oxides”, Mater. Lett., vol. 30, pp. 93-97, 1997.
[51] R. B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics, Vol. 178, p.p. 569-74, 2007.
[52] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalò, S. Boldrini, L. Malavasi, R. Gerbasi, “High conductivity and chemical stability of BaCe1−x−yZrxYyO3−δ proton conductors prepared by a sol–gel method”, RSC, Vol. 18, p.p. 5120-28, 2008.
[53] M. F. Ashby, “A First Report on Sintering Diagrams”, Acta Metall., Vol. 22, pp. 275-89, 1974.
[54] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, J. Appl. Phys., Vol. 32, pp.787, 1961.
[55] EG & G Technical Services Inc., “Fuel Cell Handbook 7th Eds”, U.S., Department of Energy, 2004.
[56] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司, 2005。
[57] J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, “Insights on thermal and transport features of BaCe0.8-xZrxY0.2O3−δ proton-conducting materials”, J. Power Sources, Vol. 278, pp. 436-44, 2015.
指導教授 曾重仁 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明