博碩士論文 106328017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.223.107.149
姓名 莊迪元(Di-Yuan Chuang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
(Measurements of high-temperature, high-pressure laminar and turbulent burning velocities of toluene reference fuels and their general correlation analysis)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對兩近似辛烷值(Research Octane Number RON)之汽油替代燃料,分別為異辛烷90%與正庚烷和甲苯皆為5%之甲苯參考燃料(Toluene Reference Fuel, TRF96),以及異辛烷88.5%,正庚烷6.5% 與甲苯為5% 之TRF95,於近似汽油引擎運作之高溫高壓條件下,量測其與空氣預混之層流和紊流燃燒速度(SL和ST)。兩TRF燃氣之當量比皆為1.0,Lewis 數(Le)也皆為1.45。實驗在一高溫高壓雙腔體三維十字型燃燒設備執行,其三維十字型燃燒室中心區可產生一近似等向性紊流場,與近似恆常環境之溫度(T)、壓力(p)、方均根紊流擾動速度(u′) 與紊流場雷諾數 (ReT,flow= u′LI/v,其中LI為紊流長度積分尺度,v為運動黏滯係數)。將燃氣於中心引燃後,可利用高速紋影法得到自中央向外傳遞之球狀火焰影像,以獲得其半徑之時序資料R(t),來估算其燃燒速度。本研究的焦點在於等u′或等ReT,flow情況下,壓力效應對SL與ST之影響。TRF96燃氣在T = 373 K、p = 1 ~ 5 atm、 u′= 0 ~ 4.2m/s 之實驗條件下進行實驗; 而TRF95燃氣在T = 358 K、p = 1 ~ 5 atm、ReT,flow= 0 ~ 11,600 之實驗件下進行實驗。量測結果可顯示兩重點:(1) 在固定u′下,ST會隨p之增加而增加;(2) 然而在固定 ReT,flow下,ST卻隨p之增加而下降,且其趨勢與SL隨p呈指數性下降變化相似。前者的結果主要是當p上升而密度上升,導致 v下降,造成 ReT,flow上升因此ST上升(主要影響因素),這與傳統認知有點不同,也就是高壓條件下火焰厚度變薄,導致流力不穩定性加劇因此ST上升之機制,此應為次要因素。因此,實驗結果顯示ST與ReT,flow間應存在重大關係。接著,本研究將會統整異辛烷、主要參考燃料(Primarily Reference Fuel, PRF)、以及本研究之TRFs之ST資料,以ST一般通式進行資料分析並考量Le數,以尋找其自我相似性。分析後發現,Le > 1 之所有燃氣的正規化 ST 值小於 Le < 1之正規化 ST 值,且考量Le數後,可發現所有資料能擬合成一條曲線,顯示紊流球狀火焰具有自我相似性。最後,本研究對於瞭解汽車引擎內部之高溫高壓條件下之預混紊流燃燒現像應有所幫助。
摘要(英) This thesis aims to obtain a better understanding on laminar and turbulent burning velocities (SL and ST) for centrally-ignited, spherically-propagating toluene reference fuel (TRF)/air flames at high-temperature and high-pressure conditions over a wide range of the r.m.s. turbulent fluctuation velocity (u’) relevant to gasoline engine conditions. We measure values of SL and ST for two TRFs with slightly different research octane number, i.e. TRF95: 88.5% i-C8H18 + 6.5% C7H16+ 5% C7H8 and TRF96: 90% i-C8H18 + 5% C7H16+ 5% C7H8, both having an effective Lewis number Le ? 1.45. Experiments were conducted in an already-established double-chamber, 3D cruciform fan-stirred explosion facility, capable of generating near-isotropic turbulence field in the central uniform-temperature region of the cruciform bomb. High-speed Schlieren imaging technique was used to record the time evolutions of flame radii of the TRF/air spherical expanding flames, so that SL and ST can be estimated. The focus is placed on the pressure effect to SL and ST under either at the same u’ or at the constant turbulent flow Reynolds number situations (ReT,flow= u′LI/v) where LI represents the integral length scale of turbulence and v is kinematic viscosity. For the TRF96/air mixture, the experimental conditions are T = 373 K, p = 1 ~ 5 atm, and u’ = 0 ~ 4.2 m/s. As to the TRF95/air mixture, the experimental conditions are T = 358 K, p = 1 ~ 5 atm, and ReT,flow = 0 ~ 11600. Results show two points: (1) ST increases with increasing pressure at all fixed u’ conditions; (2) under the constant ReT,flow conditions, it is found that ST decreases with increasing pressure, similar to SL, showing a global response of burning velocities at elevated pressures. The former is mainly because the increase of pressure results in an increase of density (ρ) and thus the kinematic viscosity (ν) is decreased due to p ~ ρ ~ ν-1 leading to the increase of ReT,flow, while the commonly-held view of ST increment through the thinned flame thickness induced by hydrodynamic instability at high-pressure conditions may play a secondary role. Finally, some general correlations of the ST present data along with previous ST data of isooctane and primary reference fuels are discussed with the consideration of Le in attempt to find the self-similarity of these ST data. It is found that without the consideration of Le, the normalized ST data for Le < 1 flames have higher values than that for Le > 1 flames.
關鍵字(中) ★ 預混紊流燃燒
★ 高溫高壓
★ 辛烷值
★ 汽油替代燃料
★ 紊流場雷諾數
★ 自我相似性
關鍵字(英) ★ turbulent burning velocity
★ toluene reference fuel
★ high-pressure
★ combustion
★ turbulent flow Reynolds number
★ Lewis number
論文目次 Abstract ............................................... I
中文摘要 ............................................... II
致謝 ................................................. III
List of contents ...................................... IV
List of figures ....................................... VI
List of tables ........................................ IX
Nomenclature............................................ X
Chapter 1 Introduction ................................. 1
1.1 Research background and motivation.................. 1
1.2 Problems ........................................... 2
1.3 Methods ............................................ 4
1.4 Thesis outline ..................................... 5
Chapter 2 Literature Review............................. 7
2.1 Flame propagation .................................. 7
2.1.1 Flame propagation speed .......................... 7
2.1.2 Flame stretch rate ............................... 8
2.2 Laminar premixed combustion ........................ 9
2.2.1 Laminar burning velocities........................ 9
2.2.2 Temperature effect on laminar burning velocities. 10
2.2.3 Pressure effect on laminar burning velocities ... 11
2.2.4 Fuel composition effect on laminar burning velocities ............................................ 12
2.3 Turbulent premixed combustion ..................... 13
2.3.1 Turbulent combustion theory ..................... 13
2.3.2 Turbulent premixed combustion phase diagram ..... 14
2.3.3 Turbulent burning velocity ...................... 16
2.3.4 Pressure effect on at constant u’ conditions .... 17
2.3.5 Pressure effect at constant ReT, flow conditions. 18
2.4 Correlations of turbulent burning velocity ........ 19
2.4.1 ST correlation proposed by Bradley et al. ....... 19
2.4.2 ST correlation proposed by Kobayashi et al....... 20
2.4.3 ST correlation proposed by Chaudhuri et al. ..... 20
2.4.4 ST correlation proposed by Liu et al. ........... 22
Chapter 3 Experimental setup and Methods .............. 37
3.1 Facilities ........................................ 37
3.1.1 Large-dual combustion chamber ................... 37
3.1.2 Newly-design heating system...................... 38
3.1.3 Fuel supplied system ............................ 39
3.1.4 Flame imaging system ............................ 40
3.2 Parameters calculation and flame image analysis ....................................................... 41
3.2.1 Equivalence ratio ............................... 41
3.2.2 Lewis number .................................... 42
3.2.3 Analysis of flame images ........................ 44
3.3 Experimental procedures ........................... 44
Chapter 4 Results and Discussions ..................... 50
4.1 Laminar burning velocities ........................ 50
4.1.1 Validation of laminar burning velocities......... 50
4.1.2 Measured results of laminar burning velocities... 51
4.1.3 Pressure and temperature effect on the laminar burning velocities .................................... 51
4.2 Turbulent burning velocities ...................... 52
4.2.1 Validation of turbulent burning velocities....... 52
4.2.2 Measured results: Pressure effect on turbulent burning velocities .................................... 53
4.3 General ST correlations ........................... 54
4.3.1 Analyzed results ................................ 55
Chapter 5 Conclusions and future works ................ 72
5.1 Conclusions ....................................... 72
5.2 Future works ...................................... 73
Bibliography .......................................... 73
參考文獻 [1] https://www.ipcc.ch/sr15/.
[2] https://www.ipcc.ch/report/ar5/wg3/transport/.
[3] K. Nakata, S. Nogawa, D. Takahashi, Y. Yoshihara, A. Kumagai, T. Suzuki, Engine technologies for achieving 45% thermal efficiency of S.I. engine, SAE Int. J. Engines 9 (2015) 179-192.
[4] K. Maruta, H. Nakamura, Super lean-burn in SI engine and fundamental combustion studies, J. Combust. Soc. Japan 58 (2016) 9-19.
[5] D. Jung, N. Iida, An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation, Appl. Energy 212 (2018) 322-332.
[6] S. Tsuboi, S. Miyokawa, M. Matsuda, T. Yokomori, N. Iida, Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine, Appl. Energy 250 (2019) 617-632.
[7] K. Maruta, H. Nakamura, On the transition from ignition to flame propagation in super lean burn SI engine, J. Soc. Automotive Engineers Japan 72 (2018) 2-9.
[8] N. Morgan, A. Smallbone, A. Bhave, M. Kraft, R. Cracknell, G. Kalghatgi, Mapping surrogate gasoline compositions into RON/MON space, Combust. Flame 157 (2010) 1122-1131.
[9] Y.H. Liao, W.L. Roberts, Laminar flame speeds of gasoline surrogates measured with the flat flame method, Energ. Fuel 30 (2016) 1317-1324.
[10] O. Mannaa, M.S. Mansour, W.L. Roberts, S.H. Chung, Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON, Combust. Flame 162 (2015) 2311-2321.
[11] L. Sileghem, V.A. Alekseev, J. Vancoillie, K.M. Van Geem, E.J.K. Nilsson, S. Verhelst, A.A. Konnov, Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene, Fuel 112 (2013) 355-365.
[12] https://web.cpc.com.tw/division/rb/product-text.aspx?id=6.
[13] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
[14] C.C. Liu, S.S. Shy, C.W. Chiu, M.W. Peng, H.J. Chung, Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment, Int. J. Hydrogen Energy 36 (2011) 8595-8603.
[15] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
[16] S.S. Shy, Y.C. Chen, C.H. Yang, C.C. Liu, C.M. Huang, Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion, Combust. Flame 153 (2008) 510-524.
[17] 于德維,高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2017. https://hdl.handle.net/11296/ywfn2n
[18] 陳鈞彥,高溫高壓預混異辛烷層紊流燃燒速度量測及其一般通式含Lewis 數之考量, 國立中央大學機械工程研究所,碩士論文,2018. https://hdl.handle.net/11296/5x2k2w
[19] M.T. Nguyen, D.W. Yu, S.S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Proc. Combust. Inst. 37 (2019) 2391-2398.
[20] D. Bradley, A.K. Lau, M. Lawes, F.D. Smith, Flame stretch rate as a determinant of turbulent burning velocity, Philos. Trans. R. Soc. of London Seri. A 338 (1992) 359-387.
[21] R.G. Abdel-Gayed, D. Bradley, M. Lawes, Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. London Ser. A 414 (1987) 389-413.
[22] D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2MPa, Combust. Flame 158 (2011) 123-138.
[23] S. Chaudhuri, F. Wu, D. Zhu, C.K. Law, Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett. 108 (2012) 044503-1-5.
[24] L.J. Jiang, S.S. Shy, W.Y. Li, H.M. Huang, M.T. Nguyen, High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames, Combust. Flame 172 (2016) 173-182.
[25] H. Kobayashi, Y. Kawabata, K. Maruta, Experimental study on general correlation of turbulent burning velocity at high pressure, Symp. (Int.) Combust. 27 (1998) 941-948.
[26] 林彥廷,高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2019.
[27] Z. Chen, M.P. Burke, Y. Ju, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst. 32 (2009) 1253–1260.
[28] D. Bradley, P.H. Gaskell, X.J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flame: a computational study, Combust. Flame 104 (1996) 176-198.
[29] M.P. Burke, Z. Chen, Y. Ju, F.L. Dryer, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame 156 (2009) 771-779.
[30] A.P. Kelley, C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame 156 (2009) 1844-1851.
[31] R.K. Cheng, I.G. Shepherd, The influence of burner geometry on premixed turbulent flame propagation, Combust. Flame 85 (1991) 7-26.
[32] D. Bradley, T.M. Cresswell, J.S. Puttock, Flame acceleration due to flame-induced instabilities in large-scale explosions, Combust. Flame 124 (2001) 551-559.
[33] G. Tian, R. Daniel, H. Li, H. Xu, S. Shuai, P. Richards, Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline, Energ. Fuel 24 (2010) 3898-3905.
[34] D. Bradley, R.A. Hick, M. Lawes, C.G.W. Sheppard, R. Woolley, The measurement of laminar burning velocities and markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame 115 (1998) 126-144.
[35] M. Metghalchi, J.C. Keck, Burning velocity of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combust. Flame 48 (1982) 191-210.
[36] A.S. Huzayyin, H.A. Moneib, M.S. Shehatta, A.M.A. Attia, Laminar burning velocity and explosion index of LPG–air and propane–air mixtures, Fuel 87 (2008) 39-57.
[37] F.A. Williams, Combustion Theory, Second ed., Addison-Wesley, Redwood City, 1985.
[38] C.K. Law, C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Prog. Energy Combust. Sci. 26 (2000) 459-505.
[39] G.H. Markstein., Experimental and theoretical studies of flame front stability, J. Aeronaut. Sci. 18 (1951) 199-209.
[40] G.I. Sivashinsky, On a distorted flame front as a hydrodynamic discontinuity, Acta. Astronaut. 3 (1976) 889-918.
[41] P.D. Ronney, A theoretical study of propagation and extinction of nonsteady spherical flame front, SIAM J. Appl. Math 49 (1989) 1029-1046.
[42] J.M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci. 29 (2003) 599-634.
[43] M. Lawes, M.P. Ormsby, C.G.W. Sheppard, R. Woolley, The turbulent burning velocity of iso-octane/air mixtures, Combust. Flame 159 (2012) 1949-1959.
[44] S. Zhang, T.H. Lee, H. Wu, J. Pei, WeiWu, F. Liu, C. Zhang, Experimental and kinetic studies on laminar flame characteristics of acetone-butanol-ethanol (ABE) and toluene reference fuel (TRF) blends at atmospheric pressure, Fuel 232 (2018) 755-768.
[45] A.N. Lipatnikov, W.Y. Li, L.J. Jiang, S.S. Shy, Does density ratio significantly affect turbulent flame speed, Flow Turbul. Combust. 98 (2017) 1153-1172.
[46] D. Bradley, M.Z. Haq, R.A. Hicks, T. Kitagawa, M. Lawes, C.G.W. Sheppard, R. Woolley, Turbulent burning velocity, burned gas distribution, and associated flame surface definition, Combust. Flame 133 (2003) 415-430.
[47] C.K. Law, Combustion Physics, Cambridge, New York City, 2006.
[48] S.R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, 2012.
[49] I. Glassman, Combustion, Third Ed., Academic Press, San Diego City, 1996.
[50] A.N. Lipatnikov, Fundamentals of Premixed Turbulent Combustion, CRC Press, London City, 2012.
[51] G.E. Andrews, D. Bradley, The burning velocity of methane-air mixtures, Combust. Flame 19 (1972) 275-288.
[52] B. Rotavera, M. Krejci, A. Vissotski, E.L. Petersen, Laminar flame speed measurements of methyl octanoate, n-nonane, and methylcyclohexane, 51 AIAA Aer. Sci. M. N. (2013) 1166-1173.
[53] Ö.L. Gülder, Laminar burning velocities of methanol, ethanol and isooctane-air mixtures, Symp. (Int.) Combust. 19 (1982) 275-281.
[54] F.N. Egolfopoulos, C.K. Law, Chain mechanisms in the overall reaction orders in laminar flame propagation, Combust. Flame 80 (1990) 7-16.
[55] C.K. Westbrook, F.L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol. 27 (1981) 31-43.
[56] A.P. Kelley, G. Jomaas, C.K. Law, Critical radius for sustained propagation of spark-ignited spherical flames, Combust. Flame 156 (2009) 1006-1013.
[57] S.P. Marshall, S. Taylor, C.R. Stone, T.J. Davies, R.F. Cracknell, Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals, Combust. Flame 158 (2011) 1920-1932.
[58] X. Zhang, C. Tang, H. Yu, Q. Li, J. Gong, Z. Huang, Laminar flame characteristics of iso-octane/n-butanol blend–air mixtures at elevated temperatures, Energ. Fuel 27 (2013) 2327-2335.
[59] S.G. Davis, H. Wang, K. Breinsky, C.K. Law, Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames, Symp. (Int.) Combust. 26 (1996) 1025–1033.
[60] P. Dirrenberger, P.A. Glaude, R. Bounaceur, H. Le, A.P.d.C. Gall, A. Konnov, F.B. Leclerc, Laminar burning velocity of gasolines with addition of ethanol, Fuel 115 (2014) 162-169.
[61] K. Kumar, C.J. Sung, Flame propagation and extinction characteristics of neat surrogate fuel components, Energ. Fuel 7 (2010) 3840-3849.
[62] l.Y. Huang, C.J. Sung, J.A. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combust. Flame 139 (2004) 239-251.
[63] S.M. Sarathy, A. Farooq, G.T. Kalghatgi, Recent progress in gasoline surrogate fuels, Prog. Energy Combust. Sci. 65 (2017) 1-42.
[64] G. Damköhler, The Effect of Turbulence on the Flame Velocity in Gas Mixtures, NACA-TM-1112 Technical Report (1947) 601-652.
[65] R. Borghi, Turbulent combustion modeling, Prog. Energy Combust. Sci. 14 (1988) 245-292.
[66] N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1986) 1231-1250.
[67] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, Burning velocity of turbulent premixed flames in a high-pressure environment, Symp. (Int.) Combust. 26 (1996) 289-396.
[68] G. Darrieus, Propagation d′un front de flamme, La Technique Moderne, Paris City, 1938.
[69] L.D. Landau, On the theory of slow combustion, Acta Physicochim URSS 19 (1944) 77-85.
[70] V. Akkerman, V.V. Bychkov, L.E. Eriksson, Numerical study of turbulent flame velocity, Combust. Flame 151 (2007) 452-471.
[71] S. Chaudhuri, V. Akkerman, C.K. Law, Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84 (2011) 026322-1-13.
[72] S. Chaudhuri, F. Wu, C.K. Law, Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88 (2013) 033005-1-13.
[73] P.D. Ronney, in: J.D. Buckmaster, T. Takeno (Eds.), Some open issues in premixed turbulent combustion, Lecture Notes in Physics, Springer-Verlag, Berlin, 1995.
[74] 黃信閔,預混紊流球狀火焰速率與自我相似傳播之量測分析,國立中央大學機械工程研究所,碩士論文,2013. https://hdl.handle.net/11296/w2y6y5
[75] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. London Ser. A 487 (2000) 1997-2019.
[76] S.S. Shy, W.J. Lin, K.Z. Peng, High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst. 28 (2000) 561-568.
[77] C. D′ippolito, A Numerical Study of Syngas Laminar Premixed Flames: Effects of Lewis Number and Flame Stretch, Master Thesis, University of Illinois, 2015. http://hdl.handle.net/10027/19652
[78] N. Bouvet, F. Halter, C. Chauveau, Y. Yoon, On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures, Int. J. Hydrogen Energy 38 (2013) 5949-5960.
[79] C.K. Law, G. Jomaas, J.K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment, Proc. Combust. Inst. 30 (2005) 159-167.
[80] B. Rotavera, P. Diévart, C. Togbe, P. Dagaut, E.L. Petersen, Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations, Proc. Combust. Inst. 33 (2011) 175-783.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2020-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明