博碩士論文 106328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.119.107.96
姓名 鍾享宸(Hsiang-Chen Chung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 反向氣流對微小粉末於儲槽排放行為影響之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化
★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 顆粒流動之行為中包含細微顆粒和間隙氣體之間的作用。在儲槽中顆粒的流動相當受到矚目。儲槽內部在間隙氣體之作用下,會使顆粒在流動時產生排放不順暢的現象,並且在顆粒小於200 µm時特別顯著。由於不同粒徑的粉末在儲槽中流動所產生的排放流率和氣泡現象都具有可探討的價值,故本研究旨在探討不同粒徑的粉末於儲槽中流動時所產生的排放流率和氣泡面積大小。本實驗以三種不同粒徑大小(90.5 µm、115.5 µm、165 µm)作為實驗探討之變因,並且以質量流率量測法、氣壓值偵測法、氣泡影像分析法作為實驗中的分析方法。本研究經由實驗測量的結果顯示:使用不同粒徑的顆粒確實是對於顆粒的排放速率有影響,顆粒粒徑較大時,其所產生的排放流率會較佳;顆粒粒徑較小時,其所產生的排放流率會較差,再加上,不同粒徑的顆粒對於空氣所形成的氣泡面積大小也會有影響,較小粒徑的顆粒在儲槽中排放時,其形成的氣泡面積較大;較大粒徑的顆粒在儲槽中排放時,其所形成的氣泡面積較小。此外,本研究也藉由氣壓偵測軟體偵測出儲槽內部氣壓的回升情形。
關鍵詞:儲槽、粒徑、質量流率、氣泡現象
摘要(英) The behavior of the particle flow involves the interaction between the fine particles and the interstitial fluid. From the interaction of the interstitial fluid, the particles may be discharged when the flow is not smooth, and the particles are particularly dominated when the particles are less than 200 μm . Since the discharging flow rates and the bubble phenomenon are worth investigating with different size of the particles in silo, so this research means to investigate the discharging flow rate and the bubble maximal area of the different size of the particles.
Three different size of the powders were used in this research (90.5 μm、115.5 μm、165 μm). In this research, mass flow rate measured method , gauge pressure detected method and the bubble image observed method were used as the experimental analyzed method. Based on the results of this experiment, it can be understood that the powders with different particle size indeed affect the area of the air bubbles also the mass flow rate of the powders .That is to say:the larger powder size is, the higher mass flow rate will be, the larger powder size is, the smaller maximal area of the bubble is ; the smaller powder size is, the lower mass flow rate will be, the smaller powder size is , the larger maximal area of the bubble is.
Furthermore, this research also detects the values of pressure rising in the silo via the pressure detection software.
Keywords: silo、particle size、mass flow rate、bubble phenomenon
關鍵字(中) ★ 儲槽
★ 顆粒粒徑
★ 氣泡面積
關鍵字(英) ★ Silo
★ Particle size
★ Bubble area
論文目次 摘要ⅰ
Abstract ⅱ
目錄 ⅳ
附表目錄 ⅵ
附圖目錄 ⅶ
符號說明 ⅹ

第一章 前言 1
1.1研究背景 1
1.1.1儲槽介紹 1
1.1.2儲槽排放行為介紹 2
1.2文獻回顧 4
1.2.1儲槽開口與排放流率 4
1.2.2間隙氣體與空氣氣泡 7
1.2.3顆粒粒徑與流動性 11
1.3研究動機 13
1.4論文架構 14

第二章 實驗方法 20
2.1實驗設備 20
2.2分析方法 22
2.2.1累積質量及瞬時質量流率量測法 22
2.2.2樣本擾動係數計算法 23
2.2.3孔隙率與滲透率計算法 23
2.2.4平均排放流率計算法 24
2.2.5儲槽內部氣壓量測法 24
2.2.6空氣進入率之計算法 25
2.3實驗流程 25

第三章 實驗結果與討論 32
3.1非開放系統下顆粒排放行為 32
3.1.1累積質量及流動順暢度 32
3.1.2瞬時流率與排放穩定性 34
3.2儲槽氣壓值 36
3.3氣泡現象 38
3.3.1氣泡影像 38
3.3.2氣泡二值化及形心位置 39
3.3.3氣泡面積 40
3.3.4空氣進入率 40
3.3.5儲槽內部氣壓與空氣進入率 41

第四章 結論 67
參考文獻 70
參考文獻 [1] J. K. Prescott, R. A. Barnum, (2000) “On Powder
Flowability,”Pharmaceutical Technology.
[2] W. A. Beverloo, H. A. Leniger, J. van de Velde, (1961)
“The flow of granular solids through orifices,” Chemical
Engineering Science,Vol.15, pp. 260-269.
[3] I. Zuriguel, A. Garcimartín, D. Maza, L. A. Pugnaloni,
and J. M. Pastor, (2005)“Jamming during the discharge of
granular matter from a silo,” Physical Review E, Vol.71.
[4] H. A. Janssen, “Versuche uber Getreidedruck in
Silozellen, (1895) ” Verein Deutscher Ingenieure,
Vol. 39, pp. 1045-1049.
[5] A. Samadani, A. Pradhan, A. Kudrolli, (1999)
“Size segregation of granular matter in silo
discharges,”
Physical Review E, Vol. 60, pp.7203-7209.
[6] D. Geldart, J.C. Williams, (1985) “Flooding from
hoppers: identifying powders likely to give problems,”
Powder Technology, Vol 43, pp. 181-183.
[7] R. L. Brown, J. C. Richards, (1970) “Principles of
Powder Mechanics,” Pergamon Press, London.
[8] A. Harmes, (1963)“Flow of granular material through
horizontal Apertures,”Chem. Eng. Sci, Vol.18,
pp.297-306.
[9] I. Zuriguel, A. Janda, A. Garcimarti´n, C. Lozano, R.
Are´valo, and D. Maza, (2011) “Silo Clogging Reduction
by the Presence of an Obstacle,”Physical Review Letter,
Vol.107.
[10] K. Endo, K. A. Reddy, and H. Katsuragi, (2017)
Obstacle-shape effect in a two-dimensional granular silo
“flow field,” Physical Review Fluids, Vol.2.
[11] K.W. To, H. T. Tai, (2017) “Flow and clog in a silo
with oscillating exit a silo clog,” Physical Review E,
Vol.96, (3).
[12] 溫駿宇,粉粒體於儲槽排放行為及氣泡現象之研究,碩士論文,
國立中央大學能源工程所,中壢、台灣,2017。
[13] D. López-Rodríguez, D. Gella, K. To, D. Maza, A.
Garcimartín, I. Zuriguel, (2019) “Effect of hopper
angle on granular clogging,” Physical Review E,
Vol.99,(3).
[14] B. J. Crewdson, A. L. Ormond, R. M. Nedderman, (1977)
“Air-impeded medium,” Vol.73, (5).
[15] R.M. Nedderman, (1983) 2nd Int. “Conf. on Design of
Strength and Flow,” Stratford-upon-Avon, UK.
[16] B. K. Muite, M. L. Hunt, G. G. Joseph, (2004) “The
effects of a counter-current interstitial 96 flow on a
discharging hourglass,” Physics of Fluids,
Vol.16, pp.3415-3425.
[17] S. S. Hsiau, C. C. Hsu, J. Smid, (2010) “The discharge
of fine silica sands in a silo,” Physics of Fluids,
Vol.22.
[18] S. S. Hsiau, C. C. Liao, J. H. Lee, (2012) “The
discharge of fine silica sand in a silo under different
ambient air pressures,” Physics of Fluids, Vol.24,
(4).
[19] J. Lawrence, D. E. Maier, (2011) “Three-dimensional
airflow distribution in a maize silo with peaked,
levelled and cored grain mass configurations,”
Biosystems Engineering, Vol.110, (3), pp. 321–329.
[20] Y. Bertho, C. Becco, N. Vandewalle, (2007) “Dense
bubble flow in a silo: An unusual flow of a dispersed.
[21] D. Geldart, (1978) “Homogeneous fluidization of fine
powders using various gases and pressures,” Powder
Technology, Vol.19, pp.133-136.
[22] H. Salehia, M. Polettob, D. Barlettab, S. H. Larssona,
(2019) “Predicting the silo discharge behavior of wood
chips–A choice of method,” Biomass and Bioenergy,
Vol.120, pp.211-218.
[23] H. Shi, R. Mohanty, S. Chakravarty, R. Cabiscol, M.
Morgeneyer, H. Zetzener, V. Magnanimo, (2018) “Effect
of Particle Size and Cohesion on Powder Yielding and
Flow,” KONA Powder and Particle Journal,
Vol.35, pp.226-250.
[24] F. Miccio, D. Barletta, M. Poletto, (2012) “Flow
properties and arching behavior of biomass particulate
solids,” Powder Technology, Vol.331, pp.68–73.
[25] W. A. Beverloo, H. A. Leniger, J. van de. Velde, (1961)
“The flow of granular solids through orifices,”
Chemical Engineering Science, Vol.15,
pp. 260-269.
[26] S. S. Hsiau, C. C. Hsu, J. Smid, (2010)“The discharge
of fine silica sands in a silo,” Physics of Fluids,
Vol.22.
[27] Y. C. Chung, C. K. Lin, P. H. Chou, S. S. Hsiau, (2016)
“Mechanical behavior of a granular solid and its
contacting deformable structure under uni-axial
compression – Part I: Joint DEM–FEM modelling and
experimental validation,” Chemical Engineering Science,
Vol.144, pp. 404-420.
[28] D. Geldart, (1973) “Types of Gas Fluidization,” Powder
Technology,Vol.7, pp. 285-292.
[29] P.C. Carman, (1937) “Fluid flow through granular
beds,” Transactions Institution of Chemical Engineers,
Vol.15, pp. 150-166.
[30] A. Ashour, T. Trittel, T. Börzsönyi, and R. Stannarius,
(2017) “Silo outflow of soft frictionless spheres,”
Physical Review Fluids, Vol.2.
[31] X. L. Wu, K. J. Måløy, A. Hansen, M. Ammi, D. Bideau,
(1993) “Why Hour Glasses Tick,” Physical Review
Letters, Vol.71, pp. 1363-1366.
[32] T. L. Pennec, K. J. Måløy, A. Hansen, M. Ammi, D.Bideau,
X. L. Wu, (1996) “Ticking hour glasses: Experimental
analysis of intermittent flow,”Physical Review E,
Vol.53, pp. 2257-2264.
[33] T. L. Pennec, K. J. Måløy, E. G. Flekkøy, J. C.
Messager, M. Ammi, (1998) “Silo hiccups: Dynamic
effects of dilatancy in granular flow,”
Physics of Fluids, Vol.10, pp. 3072- 3079 .
discharge of fine particles from a hopper,” Powder
Technology, Vol.16, pp.197-207.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2019-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明