博碩士論文 106328022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.145.130.31
姓名 王士賓(SHIH-BIN WANG)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
(Numerical analysis in the Planarization 10nm of 300mm Silicon wafer Epitaxial process)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 化學氣相沉積法(chemical vapor deposition)在半導體薄膜生長製程中已是常見之方法。針對10奈米以下半導體製程所需之12吋磊晶晶圓改善平坦度,其中關鍵技術為:1.超均勻之磊晶薄膜 2.矽晶圓基材與磊晶薄膜的形狀匹配。本研究採用多重物理量有限元素分析軟體(COMSOL Multiphysics)建立磊晶製程係使用應用材料Centura®常壓磊晶反應腔體進行熱場、流場、物種傳輸模擬分析,比較以不同之進氣流量配比(Accuset)、載盤轉速與氣體混和區的幾何形狀(Upper liner and low liner)、石英上蓋設計(Upper dome)對於薄膜生長速率(Growth rate)之影響。
當生長大尺寸矽磊晶薄膜時,因反應腔體尺寸過大、幾何形狀過於複雜,不容易使晶圓上方的薄膜達到良好的均勻性,因此本研究首先建立起三維物理模型,當氫氣與三氯矽烷(Trichlorosilane)通入反應腔體時,三氯矽烷與氫氣會隨著溫度變化產生化學表面吸附反應。當製程溫度為1050℃-1150℃時,不同的進氣流量配比與氣體混和區的幾何形狀將影響矽磊晶薄膜的輪廓外型、薄膜沉積速率與平坦度。從模擬結果發現,藉由溫度場分析,去除氣體混和區的幾何形狀(partition),有助於氣體進入腔體前,減少溫度梯度,使混和氣體濃度更均勻,使薄膜達到較好的均勻度;從石英上蓋設計上,腔體高度及曲率半徑大小也會影響Growth rate profile甚大,在曲率半徑愈小、腔高愈大時,並搭配進氣流量比,將可得到均勻性較佳的結果。
接著,在製程參數上,加入旋轉的條件也可達到提高均勻性的效果,在模擬結果中得到,加入轉速後的均勻性皆比未旋轉時的情況較佳,並且提高轉速也可提高均勻度,在去除partition後,除了旋轉可提高均勻度的優點外,原本出現局部長率較低的現象也可有效改善。
摘要(英) Chemical vapor deposition is a common method in semiconductor thin film growth processes. The flatness is improved for 12-inch epitaxial wafers required for semiconductor processes below 10 nm. The key technologies are: 1. Ultra-uniform epitaxial film 2. The wafer substrate is matched with the shape of the epitaxial film. In this study, the multi-physics finite element analysis software (COMSOL Multiphysics) was used to establish the epitaxial process system. The thermal field, flow field and species transfer simulation were performed using the applied material Centura® atmospheric pressure epitaxy reaction chamber. The effects of different Accuset, Upper liner and low liner, and Upper dome on the growth rate of the film were compared.
When growing large-size tantalum epitaxial films, the size of the reaction chamber is too large and the geometry is too complicated, so it is not easy to achieve good uniformity of the film above the wafer. Therefore, this study first establishes a three-dimensional physical model, when hydrogen and trichlorosilane is introduced into the reaction chamber, trichlorosilane and hydrogen will react with temperature to produce a chemical surface adsorption reaction. When the process temperature is 1050℃ to 1150 °C, the different inlet flow ratio and the geometry of the gas mixing zone will affect the shape, film deposition rate and flatness of the bismuth epitaxial film. From the simulation results, it is found that the temperature field analysis removes the geometry of the gas mixing zone, helps the gas to enter the cavity, reduces the temperature gradient, makes the concentration of the mixed gas more uniform, and achieves a better uniformity of the film. From the quartz cover design, the height of the cavity and the radius of curvature also affect the Growth rate profile. The smaller the radius of curvature, the larger the cavity height, and the ratio of the intake flow rate, the better uniformity results.
Then, in the process parameters, the addition of the rotation condition can also achieve the effect of improving the uniformity. In the simulation results, the uniformity after the addition of the rotation speed is better than that when the rotation is not performed, and the increase of the rotation speed can also improve the uniformity. After the partition is removed, in addition to the advantage that the rotation can improve the uniformity, the phenomenon that the local growth rate is low can be effectively improved.
關鍵字(中) ★ 常壓化學氣相沉積
★ 矽磊晶薄膜
★ 三氯矽烷
關鍵字(英) ★ atmospheric pressure chemical vapor deposition
★ Silicon epitaxial film
★ trichloromethane
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
符號說明 X
第一章 緒論 1
1-1 研究背景 1
1-2化學氣相沉積反應過程 2
1-2-1 化學氣相沉積反應步驟 2
1-2-2 薄膜表面沉積過程 3
1-2-3 吸附過程 4
1-3磊晶技術與化學氣相沉積分類 5
1-3-1 磊晶技術5
1-3-2 常壓反應腔體系統 6
1-4文獻回顧 7
1-5 研究動機與目的 9
第二章 研究方法 17
2-1 模型幾何 17
2-1-1 物理系統與基本假設 17
2-1-2 統御方程式 18
2-3 混合氣體物理參數 19
2-2 化學反應方程式 21
2-2-1 化學反應 21
2-2-2 表面化學反應 22
2-5 表面化學計算 23
2-5-1 表面碰撞原理 (Collision Theory) 23
2-5-2 吸附反應 (Adsorption reaction) 23
2-1-3 邊界條件 24
2-7 無因次參數 25
第三章 數值方法 29
3-1 有限元素法(finite element method) 29
3-2 網格配置測試 29
3-3 收斂公差測試 30
第四章 結果與討論 32
4-1 穩態模型驗證 32
4-1-1 化學模型 32
4-1-2 沉積生長速率曲線之實驗與模擬驗證 32
4-2 流場與均勻性關係 33
4-2-1 速度邊界層厚度 33
4-2-2 Upper dome對生長速率的影響 33
4-2-3 Upper dome設計介紹 33
4-2-4固定曲率改變腔體高度 34
4-2-5 固定腔高改變曲率半徑 34
4-3 幾何形狀(partition)對沉積曲線的基礎輪廓關係 35
4-3-1 薄膜生長速率與流線趨勢關係 35
4-3-2 去除Partition概念設計 35
4-3-3 去除Upper liner partition之影響 35
4-3-4 去除Upper and low liner partition之影響 36
4-4 旋轉情況下對長率趨勢之探討 37
4-4-1 旋轉後對均勻性的影響 37
第五章 結論與未來研究方向 51
5-1 結論 51
5-2 未來研究方向 52
參考文獻 53
參考文獻 [1] K. F. Jensen and W. Kern, in the thin Film Processes II, Eds. J. L. Vossen and W.
Kern, Academic Press,New YorK ,1991.
[2] L. Eckertova and T. Ruzicka, Diagnostics and Applications of Thin Films, 1993.
[3] Eiike Janocha, Electronic Properties of ALD Zinc Oxide Interfaces and its
Implication for Chalcopyrite Absorber Materials, Helmholtz Centre
Berlin ,2011
[4] 田民波,”薄膜技術與薄膜材料”五南圖書出版公司,2012
[5] Wenski, S. (2019). US8372298B2 - Method for producing epitaxially coated silicon wafers - Google Patents.
[6] Habuka, H., Katayama, M., Shimada, M. and Okuyama, K. (1994). Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. Japanese Journal of Applied Physics, 33(Part 1, No. 4A), pp.1977-1985.
[7] Habuka, H., Nagoya, T., Mayusumi, M., Katayama, M., Shimada, M. and Okuyama, K. (1996). Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure. Journal of Crystal Growth, 169(1), pp.61-72.
[8] Kommu, S., Wilson, G. and Khomami, B. (2000). “A Theoretical/Experimental Study of Silicon Epitaxy in Horizontal Single-Wafer Chemical Vapor Deposition Reactors. ” Journal of The Electrochemical Society, 147(4), p.1538.
[9] Segal, A., Galyukov, A., Kondratyev, A., Sid’ko, A., Karpov, S., Makarov, Y., Siebert, W. and Storck, P. (2001). Comparison of silicon epitaxial growth on the 200-mm and 300-mm wafers from trichlorosilane in Centura reactors. Microelectronic Engineering, 56(1-2), pp.93-98.
[10] Habuka, H. (2001). Flatness Deterioration of Silicon Epitaxial Film Formed Using Horizontal Single-Wafer Epitaxial Reactor. Japanese Journal of Applied Physics, 40(Part 1, No. 10), pp.6041-6044.
[11] Habuka, H., Fukaya, S., Sawada, A., Takeuchi, T. and Aihara, M. (2002). Flatness Deterioration of Silicon Epitaxial Film Formed in a Horizontal Single-Wafer Epitaxial Reactor II. Japanese Journal of Applied Physics, 41(Part 1, No. 9), pp.5692-5696.
[12] Habuka, H., Fukaya, S., Sawada, A., Takeuchi, T. and Aihara, M. (2004). Formation mechanism of local thickness profile of silicon epitaxial film. Journal of Crystal Growth, 266(1-3), pp.327-332.
[13] Jeon, S., Park, H., Oh, H. and Kim, W. (2016). Computational Modeling of a Chemical Vapor Deposition Reactor for Epitaxial Silicon Formation. Science of Advanced Materials, 8(3), pp.578-582.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2019-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明