博碩士論文 106328603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.235.182.206
姓名 許啟勝(Bryan Kelvianto)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
(The Effect of CFB Air Inlet velocity, BFB Bed Height and Particle size on Pressure Profile and Mass Flow Rate of Silica Sand in Dual Bed Gasifier Cold Model)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,技術正在迅速發展。能源需求增加是可以被預期的,而我們需要能源來驅動科技,不可再生原料對於能源的轉化有其局限性的,並且會有造成全球暖化的風險。而氣化技術可以解決這個問題,因為這種方法可以實現乾淨的燃燒並可使用多種原料。雙流化床氣化是一種將燃燒室和氣化室分開的方法,由於將每個室中產生的氣體分離,所以此方法可以產生更高百分比的合成氣。為了將效率最大化,需要對DFB系統的流體動力學進行研究,因為這可以改善系統中的傳熱和傳質。在這項研究中,將使用雙流化床冷模型進行實驗,以分析粒徑從0.3mm到1mm,CFB氣體表面速度從3m / s到4.5m / s以及BFB床高從20cm到35cm影響壓力分佈和床料質量流率。本研究中使用的床層材料為矽砂,因為該為惰性材料是氣化過程中的常用材料。結果表明,隨著粒徑的增加,流動模式將發生變化,質量流速將降低,每種粒徑的壓力分佈將發生變化,可用於確定每種粒徑的緻密和稀薄區域用過的。循環流化床氣體表面速度(VairCFB)的增加將增加CFB下部區域內的壓力,而表面速度的過剩將增加CFB上部區域的壓力,同時降低底部產生的壓力。儘管床層存量(通過鼓泡流化床床高{hBFB}的差異觀察)將增加固體循環質量流量,但是床層過多將對系統產生負面影響,因為這會降低質量流率。根據此結果,可以確定用於DFB冷模型設計的最佳參數是使用0.3 mm矽砂粒,3.5m/s VairCFB和30cm hBFB的矽砂,因為這種配置將提供更好的固體循環並防止過多的顆粒從系統中丟失。這項研究的貢獻在於每個實驗的結果都可用於確定良好的操作參數,以及改善DFB設計。
摘要(英) In the recent years, technology has been rapidly developing. With this, an increase in energy consumption is to be expected. The conversion of non-renewable feedstocks to energy has its own limit and already posed a risk of global warming. Gasification technology can be used to counter this problem since this method gives a clean combustion and large range of feedstocks can be used. Dual fluidized bed gasification is a method that separates combustion and gasification chamber, which will give a higher syngas percentage due to the separation of gas produced in each chamber. To maximize the efficiency, research on the hydrodynamics of the DFB system needs to be carried out as this can improve the heat transfer and mass transfer in the system. In this study, experiments using a Dual Fluidized Bed cold model was carried out to analyze the effect of particle size from 0.3mm to 1mm, CFB gas superficial velocity from 3m/s to 4.5m/s, and BFB bed height from 20cm to 35cm to the pressure profile and the bed material mass flow rate. The bed material used in this study is silica sand as this material is the commonly used material in a gasification process due to its inert behavior The results showed that as the particle size increases, the flowing pattern will differ, the mass flow rate was decreased, and the pressure profile of each particle size was changed, where it can be used to determine the dense and lean region of each particle size used. The increase in Circulating Fluidized Bed gas superficial velocity (VairCFB) increases the pressure within the lower region of CFB, while an excess in superficial velocity increases the pressure at the upper region of CFB while decreases the pressure generated at the bottom. While the increase of Bubbling Fluidized Bed’s bed height (hBFB) increases the solid circulation mass flow rate, but an excess in bed inventory negatively impacts the system as this decreases the mass flow rate. From this results, it is possible to determine the optimum parameter used for this DFB cold model design is to use 0.3 mm silica sand particle size with 3.5 m/s VairCFB and 30cm hBFB as this configuration gives better solid circulation and it prevents too much particle from being lost from the system. The contribution of this research is that the results from each experiments can be used to decide good operating parameters and perhaps a better DFB design.
關鍵字(中) ★ 氣化
★ 氣化雙流化床
★ 合成氣
★ 循環流化床
★ 表面速度
★ 床層
★ 鼓泡流化床
關鍵字(英) ★ Gasification
★ Dual fluidized bed
★ Syngas
★ Circulating fluidized Bed
★ Superficial velocity
★ Bed inventory
★ Bubbling fluidized Bed
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGMENT iii
TABLE OF CONTENT iv
LIST OF FIGURE vii
LIST OF TABLE x
NOMENCLATURE xi
ABBREVIATIONS xiii

CHAPTER I INTRODUCTION 1
1.1 World’s Energy Problem, Global Warming, and A Way to Solve It 1
1.2 Research Motivation 4
1.3 Research Objective 5
1.4 Research Steps and Structure 6

CHAPTER II 8
FUNDAMENTAL BACKGROUND AND LITERATURE REVIEW 8
2.1 Gasification 8
2.2 Fluidization 11
2.2.1 Packed Beds 13
2.2.2 Bubbling fluidized beds 13
2.2.3 Turbulent beds 17
2.2.4 Terminal velocity of a particle 17
2.2.4.1 Terminal Velocity of Spherical Particles 19
2.2.4.2 Terminal Velocity of Non-Spherical Particles 19
2.2.5 Fast fluidized bed 20
2.2.5.1 Fast Beds Characteristics 20
2.2.5.2 Transition to Fast Fluidization 22
2.2.5.3 Transition from Bubbling to Fast Bed 23
2.2.5.4 Transport Velocity 24
2.2.6 Hydrodynamic Regimes of Fast Beds 25
2.2.6.1 Axial Voidage Profile 25
2.2.6.2 Effects of Solid Circulation Rate on CFB Voidage Profile 27
2.2.6.3 Effect of Particle Size on Suspension Density Profile 29
2.2.6.4 Effect of Bed inventory on Suspension Density Profile 30
2.2.7 Gas-solid mixing 30
2.2.7.1 Gas-solid slip velocity 31
2.2.7.2 Gas and solid dispersion 31

2.2.8 Mass Transfer in CFB and BFB 32
2.2.8.1 Inter-phase mass transfer 33
2.3 Particle Classification 34
2.3.1 Particle size 34
2.3.2 Particle size distribution 35
2.3.3 Particle shape 36
2.3.4 Particle density 37
2.3.5 Particle strength 38
2.4 Geldart’s classification of particle 39
2.5 Particle Interaction 40
2.5.1 Drag Force 41
2.5.2 Force due to pressure gradient 41
2.5.3 Collision force 42
2.6 Particle attrition 42
2.6.1 Attrition in the dense phase 45
2.6.2 Attrition in the jetting region 46
2.6.3 Attrition within the cyclone 46
2.7 Literature Review 47

CHAPTER III METHODOLOGY 51
3.1 Experimental setup 51
3.2 Experimental Procedure 57
3.2.1 DFB system operation procedure 57
3.2.2 Pressure data collection 60
3.2.3 LLS to CFB mass flow rate measurement 60
3.2.4 CFB to ULS mass flow rate measurement 61
3.3 Particle Size Measurement 62

CHAPTER IV EXPERIMENTAL RESULTS AND DISCUSSION 64
4.1 Measurement Results of Silica Sand Particle Size Distribution 64
4.2 Effect of different hBFB, VairCFB, and particle size on DFB system pressure profile and mass flow rate 69
4.2.1 Effect of different hBFB on DFB system pressure profile 69
4.2.2 Effect of different VairCFB on DFB system pressure profile 80
4.2.3 Effect of different silica sand particle size on DFB system pressure profile 89
4.2.4 Effect of different hBFB and VairCFB on DFB system mass flow rate 92
4.2.5 Effect of different particle size on DFB system mass flow rate 100
4.3 Circulating Fluidized Bed solid flow behavior due to the change in particle size… 103
4.3.1 CFB axial Voidage profile with silica sand particle size change. 103
4.3.2 Effects of solid circulation rate change due to the change in particle size on CFB system point of inflexion 105
4.3.3 Effect of particle size change on solid Suspension density 106
4.4 Bubbling Fluidized Bed minimum bubbling velocity (Umb) changes due to particle size change 108
4.5 Unexpected phenomena occurring in the DFB system operation 108
4.5.1 Backflow of particle 108
4.5.2 Spouting 109
4.5.3 Particle attrition 110

CHAPTER V 112
RESEARCH CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 112
5.1 Conclusion 112
5.2 Recommendation for future studies 114
REFERENCES 115
APPENDIX 121
APPENDIX A 121
APPENDIX B 123
參考文獻 Abrahamsen, AR., Geldart, D. Behaviour of gas-fluidized beds of fine powders part I. Homogeneous expansion. Powder technology, 1980. 26(1): p. 35-46.
Allen, T. Powder sampling and particle size determination. 2003: Elsevier.
Andersson, BÅ. Effects of bed particle size on heat transfer in circulating fluidized bed boilers. Powder Technology, 1996. 87(3): p. 239-248.
Arena, U., D′amore, M., Massimilla, L. Carbon attrition during the fluidized combustion of a coal. AIChE Journal, 1983. 29(1): p. 40-49.
Basu, P. Combustion and gasification in fluidized beds. 2006: CRC press.
Bi, HT., Ellis, N., Abba, IA., Grace, JR. A state-of-the-art review of gas–solid turbulent fluidization. Chemical Engineering Science, 2000. 55(21): p. 4789-4825.
Blinichev, VN. An investigation of the size reduction of granular materials during their processing in fluidized beds. Int. Chem. Eng., 1968. 8: p. 615-618.
Boerrigter, H., Rauch, R. Review of applications of gases from biomass gasification. ECN Biomassa, Kolen en Milieuonderzoek, 2006. 20.
Busciglio, A., Vella, G., Micale, G., Rizzuti, L. Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique. Chemical Engineering Journal, 2008. 140(1-3): p. 398-413.
Campbell, CS., Wang, DG. Particle pressures in gas-fluidized beds. Journal of Fluid Mechanics, 1991. 227: p. 495-508.
Chirone, R., D′amore, M., Massimilla, L., Mazza, A. Char attrition during the batch fluidized bed combustion of a coal. AIChE journal, 1985. 31(5): p. 812-820.
Chraibi, M., Flamant, G. Kinetic thermal and chemical attrition of manganese chloride particles in a fluidized bed. Powder technology, 1989. 59(2): p. 97-107.
Davidson, J., Harrison, D. Fluidized Particles, Cambridge University Press. Cambridge, New York, 1963.
Dinh, CB., Hsiau, SS., Su, CY., Tsai, MY., Chen, YS., Nguyen, HB., Wan, HP. Predictions of undesirable air–sand flow behaviors in a dual fluidized bed cold flow system via a CFD full-loop model. Journal of the Taiwan Institute of Chemical Engineers, 2019.
Donsi, G., Massimilla, L., Miccio, M. Carbon fines production and elutriation from the bed of a fluidized coal combustor. Combustion and flame, 1981. 41: p. 57-69.
Dry, R., Judd, MR. Fluidised beds of fine, dense powders: scale-up and reactor modelling. Powder technology, 1985. 43(1): p. 41-53.
E4Tech. Review of technologies for gasification of biomass and wastes, 2009, National Non-Food Crops Centre United Kingdom.
Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog., 1952. 48: p. 89-94.
Geldart, D. Types of gas fluidization. Powder technology, 1973. 7(5): p. 285-292.
Geldart, D., Abrahamsen, AR. Homogeneous fluidization of fine powders using various gases and pressures. Powder Technology, 1978. 19(1): p. 133-136.
Grace, JR. Fluidized bed hydrodynamics. Handbook of multiphase systems, 1982. 8.
Horio, M., Iwadate, Y., Sugaya, T. Particle normal stress distribution around a rising bubble in a fluidized bed. Powder technology, 1998. 96(2): p. 148-157.
Howard, JR. Fluidized bed technology: principles and applications. 1989: A. Hilger.
Hutchings, IM. Mechanisms of wear in powder technology: a review. Powder Technology, 1993. 76(1): p. 3-13.
International Energy Agency. Total primary energy supply (TPES) by source, World 1990-2017, 2019. Retrieved November 30, 2019, from https://www.iea.org/data-and-statistics
Johansson, A., Johnsson, F., Leckner, B. Solids back-mixing in CFB boilers. Chemical engineering science, 2007. 62(1-2): p. 561-573.
Karri, SR., Werther, J. Gas distributor and plenum design in fluidized beds, in Handbook of fluidization and fluid-particle systems. 2003, CRC Press. p. 163-178.
Knowlton, TM. Hydrodynamics and non-mechanical solid recycle and discharge system in circulating fluidized bed systems. in Proceedings of the Workshop on Materials Issue in Circulating Fluidized Bed. 1990.
Knowlton, TM. Private Communication. 1990b.
Kunni, D., Levenspiel, O. Fluidization Engineering, Butterworth Heinemann. Stoneham, 1991.
Kwauk, M., Wang, N., Li, Y., Chen, B. Circulating Fluid Bed Technology, ed. P. Basu, 1986, Pergamon Press.
Li, Y., Wu, P. Axial gas mixing in circulating fluidized bed, In Circulating Fluidized Bed Technology III, Basu, P., Hasatani, M., and Horio, M., Eds. Pergamon Press, Oxford, 1991: p. 581–586.
Liu, H., Cattolica, RJ., Seiser, R. Operating parameter effects on the solids circulation rate in the CFD simulation of a dual fluidized-bed gasification system. Chemical Engineering Science, 2017. 169: p. 235-245.
Marinkovic, J. Choice of bed material: a critical parameter in the optimization of dual fluidized bed systems. 2016: Chalmers University of Technology.
Massimilla, L., Salatino, P. A theoretical approach to the characterization of carbon attrition in a fluidized bed combustor. Chemical Engineering Communications, 1987. 62(1-6): p. 285-301.
Matsen, JM. The rise and fall of recurrent particles: Hydrodynamics of circulation, in Circulating Fluidized Bed Technology. 1988, Elsevier. p. 3-11.
Merkus, HG. Particle size measurements: fundamentals, practice, quality. Vol. 17. 2009: Springer Science & Business Media.
Merrick, D. Particle size reduction and elutriation in a fluidized bed process. in AIChE Symp. Ser. 1974.
Nakajima, M., Harada, M., Asai, M,, Yamazaki, R., Jimbo, G. Bubble fraction and voidage in an emulsion phase in the transition to a turbulent fluidized bed. Circulating Fluidized Bed III, 1991: p. 79.
Pallarès, D., Johnsson, F. Modeling of fluidized bed combustion processes, in Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. 2013, Elsevier. p. 524-578.
Perales, J. On the transition from bublling to fast fluidization regimes. Circulating Fluidized Bed Technology, 1991: p. 73-78.
Perales, JF., Coll, T., Llop, MF., Puigjaner, L., Arnaldos, J., Casal, J. On the transition from bubbling to fast fluidization regimes, In Circulating Fluidized Bed Technology III, Basu, P., Hasatani, M., and Horio, M., Eds. Pergamon Press, Oxford, 1991: p. 73–78.
Pettyjohn, E. Effect of particle shape on free settling rates of isometric particles. Chem. Eng. Prog., 1948. 44: p. 157-172.
Pis, JJ., Fuertes, AB., Artos, V., Suarez, A., Rubiera, F. Attrition of coal ash particles in a fluidized bed. Powder Technology, 1991. 66(1): p. 41-46.
Pitchumani, R., Zhupanska, O., Meesters, GMH., Scarlett, B. Measurement and characterization of particle strength using a new robotic compression tester. Powder technology, 2004. 143: p. 56-64.
Ram, DK. The determination of minimum bubbling velocity, minimum fluidization velocity and fluidization index of fine powders (hematite) using gas-solid tapered beds. International Journal of Science and Research, 2013. 2(2): p. 287-293.
Ray, YC., Jiang, TS., Wen, CY. Particle attrition phenomena in a fluidized bed. Powder Technology, 1987. 49(3): p. 193-206.
Reddy-Karri, SB., Knowlton, T. A practical definition of fast fluidized bed, In Circulating Fluidized Bed Technology III, Basu, P., Hasatani, M., and Horio, M., Eds. Pergamon Press, Oxford, 1991: p. 67–72.
Reppenhagen, J., Werther, J. Catalyst attrition in cyclones. Powder technology, 2000. 113(1-2): p. 55-69.
Rhodes, MJ., Geldart, D. Transition to turbulence, In Fluidization V, Ostergaard, K. and Sorensen, A.,Eds. Engineering Foundation, New York, 1986a: p. 281–288.
Rhodes, MJ., Geldart, D. The hydrodynamics of recirculating fluidized beds, In Circulating Fluidized Bed Technology, Basu, P., Ed. Pergamon Press, Toronto, 1986b: p. 193–200.
Sansaniwal, S., Pal, K., Rosen, MA., Tyagi, SK. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 2017. 72: p. 363-384.
Scala, F. Mass transfer around freely moving active particles in the dense phase of a gas fluidized bed of inert particles. Chemical Engineering Science, 2007. 62(16): p. 4159-4176.
Scala, F. Fluidized bed technologies for near-zero emission combustion and gasification. 2013: Elsevier.
Scala, F., Cammarota, A., Chirone, R., Salatino, P. Comminution of limestone during batch fluidized‐bed calcination and sulfation. AIChE Journal, 1997. 43(2): p. 363-373.
Seville, JPK., Mullier, MA., Hailu, L., Adams, MJ. Attrition of agglomerates in fluidized beds, in: Fluidization VII (O.E. Potter, D.J. Nicklin, eds). Engineering Foundation, New York, 1992: p. 587–594.
Schlichting, H. Boundary Layer Theory, 7t h McGraw-Hill. New York, 1979.
Shamlou, AA., Liu, Z., Yates, JG. Hydrodynamic influences on particle breakage in fluidized beds. Chemical Engineering Science, 1990. 45(4): p. 809-817.
Sit, S., Grace, J. Interphase mass transfer during bubble formation in fluidized beds, in Proceedings of fluidization V. 1986.
Squires, A. Fluidized Bed Combustion and Applications, 1983, Applied Science Publishers, Ed. JR Howard, Barking.
Sun, G., Chen, G. Transition to turbulent fluidization and its prediction, In Fluidization VI, Grace, J. R., Shemilt, L. W., and Bergougnou, M. A., Eds. Engineering Foundation, New York, 1989: p. 33–40.
Tamidi, AM., Shaari, KZK., Yusup, S., Keong, LK. Model development for hydrodynamic study of fluidized bed gasifier for biomass gasification. Journal of Applied Sciences, 2011. 11(13): p. 2334-2339.
Vaux, WG. Attrition of particles in the bubbling zone of a fluidized bed. in Proc. Am. Power Conf.;(United States). 1978. Westinghouse R and D Center, Pittsburgh, PA.
Vaux, WG., Keairns, DL. Particle attrition in fluid-bed processes, in Fluidization. 1980, Springer. p. 437-444.
Wang, D., Fan, LS. Particle characterization and behavior relevant to fluidized bed combustion and gasification systems, in Fluidized bed technologies for near-zero emission combustion and gasification. 2013, Elsevier. p. 42-76.
Wang, Z., Ren, S., Huang, N. Saltation of non-spherical sand particles. PloS one, 2014. 9(8): p. e105208.
Werther, J., Xi, W. Jet attrition of catalyst particles in gas fluidized beds. Powder technology, 1993. 76(1): p. 39-46.
Yang, WC. Handbook of fluidization and fluid-particle systems. 2003: CRC press.
Yates, JG., Cobbinah, SS., Cheesman, DJ., Jordan, SP. Particle attrition in fluidized beds containing opposing jets. in AIChE Symposium Series. 1991.
Yerushalmi, J., Turner, DH., Squires, AM. The fast fluidized bed. Industrial & Engineering Chemistry Process Design and Development, 1976. 15(1): p. 47-53.
Yue, G., Lu, J., Zhang, H., Yang, H., Zhang, J., Liu, Q., Li, Z., Joos, E., Jaud, P. Design theory of circulating fluidized bed boilers. in 18th International Conference on Fluidized Bed Combustion. 2005. American Society of Mechanical Engineers Digital Collection.
Zenz, FA. Help from project EARL. Hydrocarbon Processing, 1974. 4: p. 119-120.
Zenz, F. Studies of attrition rates in fluid-particke systems via free fall, grid jets, and cyclone impact. J. Powder Bulk Solids Technol., 1980. 4(2): p. 13.
Zhang, H., Lu, J,. Yang, H., Yong, J., Wang, Y., Xiao, X., Zhao, X., Yue, G. Heat transfer measurements and predictions inside the furnace of 135 MWe CFB boiler, In Circulating Fluidized Bed Technology III, Cen, K., Ed. International Academic Publishers, Beijing, 2005. 254–260.
指導教授 蕭述三(Shu-San, Hsiau) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明