參考文獻 |
[1] P. R. Ehrlich, and J. Harte, “To feed the world in 2050 will require a global revolution,” Proceedings of the National Academy of Sciences, Vol. 112, no. 48, pp. 14743-14744, 2015.
[2] J. I. Pérez-Díaz, M. Chazarra, J. García-González, G. Cavazzini, and A. Stoppato, “Trends and challenges in the operation of pumped-storage hydropower plants,” Renewable and Sustainable Energy Reviews, Vol. 44, pp. 767-784, 2015.
[3] M. Budt, D. Wolf, R. Span, and J. Yan, “A review on compressed air energy storage: Basic principles, past milestones and recent developments,” Applied Energy, Vol. 170, pp. 250-268, 2016.
[4] C.-C. Lin, H.-C. Wu, J.-P. Pan, C.-Y. Su, T.-H. Wang, H.-S. Sheu, and N.-L. Wu, “Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode,” Electrochimica Acta, Vol. 101, pp. 11-17, 2013.
[5] H.-M. Liu, D. Saikia, H.-C. Wu, C.-Y. Su, T.-H. Wang, Y.-H. Li, J.-P. Pan, and H.-M. Kao, “Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries,” RSC Advances, Vol. 4, no. 99, pp. 56147-56155, 2014.
[6] C. Liao, L. Han, W. Wang, W. Li, X. Mu, Y. Kan, J. Zhu, Z. Gui, X. He, L. Song, and Y. Hu, “Non-Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultra-Stable Cycling and Fire-Safety Lithium Metal Batteries,” Advanced Functional Materials, Vol. 33, no. 17, pp. 2212605, 2023.
[7] G. Jiang, J. Liu, Z. Wang, and J. Ma, “Stable Non-flammable Phosphate Electrolyte for Lithium Metal Batteries via Solvation Regulation by the Additive,” Advanced Functional Materials, Vol. n/a, no. n/a, pp. 2300629, 2023.
[8] J. Lee, H.-S. Lim, X. Cao, X. Ren, W.-J. Kwak, I. A. Rodríguez-Pérez, J.-G. Zhang, H. Lee, and H.-T. Kim, “Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte,” ACS Applied Materials & Interfaces, Vol. 12, no. 33, pp. 37188-37196, 2020.
[9] X. Wang, L. Yang, N. Ahmad, L. Ran, R. Shao, and W. Yang, “Colloid Electrolyte with Changed Li+ Solvation Structure for High-Power, Low-Temperature Lithium-Ion Batteries,” Advanced Materials, Vol. 35, no. 12, pp. 2209140, 2023.
[10] J. Peng, D. Wu, P. Lu, Z. Wang, Y. Du, Y. Wu, Y. Wu, W. Yan, J. Wang, H. Li, L. Chen, and F. Wu, “High-safety, wide-temperature-range, low-external-pressure and dendrite-free lithium battery with sulfide solid-state electrolytes,” Energy Storage Materials, Vol. 54, pp. 430-439, 2023.
[11] H. Wan, Z. Wang, S. Liu, B. Zhang, X. He, W. Zhang, and C. Wang, “Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design,” Nature Energy, Vol. 8, no. 5, pp. 473-481, 2023.
[12] T. Yang, C. Wang, W. Zhang, Y. Xia, H. Huang, Y. Gan, X. He, X. Xia, X. Tao, and J. Zhang, “A critical review on composite solid-state electrolytes for lithium batteries: design strategies and interface engineering,” Journal of Energy Chemistry, 2023.
[13] Y. Jin, and P. J. McGinn, “Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method,” Journal of Power Sources, Vol. 196, no. 20, pp. 8683-8687, 2011.
[14] Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, and J. B. Goodenough, “Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries,” Angewandte Chemie International Edition, Vol. 56, no. 3, pp. 753-756, 2017.
[15] X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, “Negating interfacial impedance in garnet-based solid-state Li metal batteries,” Nature Materials, Vol. 16, no. 5, pp. 572-579, 2017.
[16] X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, and Y. Shen, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes,” Journal of the American Chemical Society, Vol. 139, no. 39, pp. 13779-13785, 2017.
[17] D. Deng, “Li‐ion batteries: basics, progress, and challenges,” Energy Science & Engineering, Vol. 3, no. 5, pp. 385-418, 2015.
[18] A. Volta, “XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S,” Philosophical Transactions of the Royal Society of London, Vol. 90, pp. 403-431, 1997.
[19] P. Kurzweil, “Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery,” Journal of Power Sources, Vol. 195, no. 14, pp. 4424-4434, 2010.
[20] J. Song, K. Xu, N. Liu, D. Reed, and X. Li, “Crossroads in the renaissance of rechargeable aqueous zinc batteries,” Materials Today, Vol. 45, pp. 191-212, 2021.
[21] R. Kandeeban, K. Saminathan, K. Manojkumar, C. G. Dilsha, and S. Krishnaraj, “Battery economy: Past, present and future,” Materials Today: Proceedings, Vol. 48, pp. 143-147, 2022.
[22] G. N. Lewis, and F. G. Keyes, “THE POTENTIAL OF THE LITHIUM ELECTRODE,” Journal of the American Chemical Society, Vol. 35, no. 4, pp. 340-344, 1913.
[23] M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,” Science, Vol. 192, no. 4244, pp. 1126-1127, 1976.
[24] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density,” Solid State Ionics, Vol. 3-4, pp. 171-174, 1981.
[25] 彰. 吉野, “炭素材料が電池負極になるまで,” 炭素, Vol. 1999, no. 186, pp. 45-49, 1999.
[26] C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, and J. B. Goodenough, “Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4–Li2Mn4O9–Li4Mn5O12System,” Journal of Solid State Chemistry, Vol. 123, no. 2, pp. 255-266, 1996.
[27] Z. Ruding, "鋰離子電池和鋰聚合物電池概述."
[28] " 一文看懂固態電池的發展現狀," 每日頭條, 2017.
[29] J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction,” Chemical Reviews, Vol. 116, no. 1, pp. 140-162, 2016.
[30] 劉佳兒, "無機固態電解質材料(上)," 工業材料雜誌-高能量固態電池與材料技術專題, 2018.
[31] R. Kanno, and M. Murayama, “Lithium Ionic Conductor Thio-LISICON: The Li[sub 2]S-GeS[sub 2]-P[sub 2]S[sub 5] System,” Journal of The Electrochemical Society, Vol. 148, no. 7, pp. A742, 2001.
[32] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, “A lithium superionic conductor,” Nature Materials, Vol. 10, no. 9, pp. 682-686, 2011.
[33] S. Yubuchi, M. Uematsu, M. Deguchi, A. Hayashi, and M. Tatsumisago, “Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid-state electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent,” ACS Applied Energy Materials, Vol. 1, no. 8, pp. 3622-3629, 2018.
[34] J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, “Fast Na+-ion transport in skeleton structures,” Materials Research Bulletin, Vol. 11, no. 2, pp. 203-220, 1976.
[35] H. Aono, “Ionic Conductivity of Solid-state electrolytes Based on Lithium Titanium Phosphate,” Journal of The Electrochemical Society, Vol. 137, no. 4, pp. 1023, 1990.
[36] Q. Zhang, F. Ding, W. Sun, and L. Sang, “Preparation of LAGP/P(VDF-HFP) polymer electrolytes for Li-ion batteries,” RSC Advances, Vol. 5, no. 80, pp. 65395-65401, 2015.
[37] P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, and J. Janek, “Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid-state electrolytes,” The Journal of Physical Chemistry C, Vol. 117, no. 41, pp. 21064-21074, 2013.
[38] R. Murugan, V. Thangadurai, and W. Weppner, “Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12,” Angewandte Chemie International Edition, Vol. 46, no. 41, pp. 7778-7781, 2007.
[39] J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, “Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure,” Journal of Solid State Chemistry, Vol. 182, no. 8, pp. 2046-2052, 2009.
[40] C. Bernuy-Lopez, W. Manalastas, J. M. Lopez del Amo, A. Aguadero, F. Aguesse, and J. A. Kilner, “Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics,” Chemistry of Materials, Vol. 26, no. 12, pp. 3610-3617, 2014.
[41] O. Bohnke, “The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application,” Solid State Ionics, Vol. 179, no. 1, pp. 9-15, 2008.
[42] S. Stramare, V. Thangadurai, and W. Weppner, “Lithium Lanthanum Titanates: A Review,” Chemistry of Materials, Vol. 15, no. 21, pp. 3974-3990, 2003.
[43] C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, and W.-Q. Han, “Recent Advances in Inorganic Solid-state electrolytes for Lithium Batteries,” Frontiers in Energy Research, Vol. 2, pp. 25, 2014.
[44] C. W. Ban, and G. M. Choi, “The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates,” Solid State Ionics, Vol. 140, no. 3, pp. 285-292, 2001.
[45] K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, “Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12,” Electrochimica Acta, Vol. 80, pp. 133-139, 2012.
[46] Z. Zhang, and J. H. Kennedy, “Synthesis and characterization of the B2S3Li2S, the P2S5Li2S and the B2S3P2S5Li2S glass systems,” Solid State Ionics, Vol. 38, no. 3, pp. 217-224, 1990.
[47] A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, and M. Tatsumisago, “Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries,” Journal of Alloys and Compounds, Vol. 591, pp. 247-250, 2014.
[48] K. Senevirathne, C. S. Day, M. D. Gross, A. Lachgar, and N. A. W. Holzwarth, “A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure,” Solid State Ionics, Vol. 233, pp. 95-101, 2013.
[49] M. Tatsumisago, M. Nagao, and A. Hayashi, “Recent development of sulfide solid-state electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries,” Journal of Asian Ceramic Societies, Vol. 1, no. 1, pp. 17-25, 2013.
[50] M. Tatsumisago, and A. Hayashi, “Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries,” Solid State Ionics, Vol. 225, pp. 342-345, 2012.
[51] Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, “A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries,” Energy & Environmental Science, Vol. 7, no. 2, pp. 627-631, 2014.
[52] R.-c. Xu, X.-h. Xia, X.-l. Wang, Y. Xia, and J.-p. Tu, “Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries,” Journal of Materials Chemistry A, Vol. 5, no. 6, pp. 2829-2834, 2017.
[53] S. A. Pervez, M. A. Cambaz, V. Thangadurai, and M. Fichtner, “Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook,” ACS Applied Materials & Interfaces, Vol. 11, no. 25, pp. 22029-22050, 2019.
[54] B. Wu, S. Wang, W. J. Evans Iv, D. Z. Deng, J. Yang, and J. Xiao, “Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems,” Journal of Materials Chemistry A, Vol. 4, no. 40, pp. 15266-15280, 2016.
[55] Z. Xue, D. He, and X. Xie, “Poly(ethylene oxide)-based electrolytes for lithium-ion batteries,” Journal of Materials Chemistry A, Vol. 3, no. 38, pp. 19218-19253, 2015.
[56] F. Faglioni, B. V. Merinov, W. A. Goddard, and B. Kozinsky, “Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance,” Physical Chemistry Chemical Physics, Vol. 20, no. 41, pp. 26098-26104, 2018.
[57] P. Barai, K. Higa, and V. Srinivasan, “Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies,” Physical Chemistry Chemical Physics, Vol. 19, no. 31, pp. 20493-20505, 2017.
[58] P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang, R. K. Selvan, C. C. Chung, H. Jia, Y. Li, Y. Kiyak, N. Wu, and X. Zhang, “Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries,” Journal of Materials Chemistry A, Vol. 6, no. 10, pp. 4279-4285, 2018.
[59] P. C. Rath, M.-S. Liu, S.-T. Lo, R. S. Dhaka, D. Bresser, C.-C. Yang, S.-W. Lee, and J.-K. Chang, “Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3-Nanofiber-Dispersed Poly(vinylidene fluoride-co-hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium-Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer,” ACS Applied Materials & Interfaces, Vol. 15, no. 12, pp. 15429-15438, 2023.
[60] H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu, Y. Yang, and X. He, “Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review,” Nano-Micro Letters, Vol. 15, no. 1, pp. 42, 2023.
[61] V. Thangadurai, H. Kaack, and W. J. F. Weppner, “Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta),” Journal of the American Ceramic Society, Vol. 86, no. 3, pp. 437-440, 2003.
[62] S. Ramakumar, N. Janani, and R. Murugan, “Influence of lithium concentration on the structure and Li+ transport properties of cubic phase lithium garnets,” Dalton Transactions, Vol. 44, no. 2, pp. 539-552, 2015.
[63] J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, “Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12,” Chemistry Letters, Vol. 40, no. 1, pp. 60-62, 2010.
[64] S. Adams, and R. P. Rao, “Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25),” Journal of Materials Chemistry, Vol. 22, no. 4, pp. 1426-1434, 2012.
[65] C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, “Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor,” Inorganic Chemistry, Vol. 50, no. 3, pp. 1089-1097, 2011.
[66] L. Wang, Z. Tang, L. Ma, and X. Zhang, “High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method,” Electrochemistry Communications, Vol. 13, no. 11, pp. 1233-1235, 2011.
[67] T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, and J. Sakamoto, “Electrochemical Window of the Li-Ion Solid-state electrolytes Li7La3Zr2O12,” ACS Energy Letters, Vol. 2, no. 2, pp. 462-468, 2017.
[68] Y. Zhu, X. He, and Y. Mo, “Origin of Outstanding Stability in the Lithium Solid-state electrolytes Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations,” ACS Applied Materials & Interfaces, Vol. 7, no. 42, pp. 23685-23693, 2015.
[69] F. Han, Y. Zhu, X. He, Y. Mo, and C. Wang, “Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid-state electrolytes,” Advanced Energy Materials, Vol. 6, no. 8, pp. 1501590, 2016.
[70] C. L. Tsai, N. T. Thuy Tran, R. Schierholz, Z. Liu, A. Windmüller, C.-a. Lin, Q. Xu, X. Lu, S. Yu, H. Tempel, H. Kungl, S.-k. Lin, and R.-A. Eichel, “Instability of Ga-substituted Li7La3Zr2O12 toward metallic Li,” Journal of Materials Chemistry A, Vol. 10, no. 20, pp. 10998-11009, 2022.
[71] J. E. Ni, E. D. Case, J. S. Sakamoto, E. Rangasamy, and J. B. Wolfenstine, “Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet,” Journal of Materials Science, Vol. 47, no. 23, pp. 7978-7985, 2012.
[72] H.-Y. Li, B. Huang, Z. Huang, and C.-A. Wang, “Enhanced mechanical strength and ionic conductivity of LLZO solid-state electrolytes by oscillatory pressure sintering,” Ceramics International, Vol. 45, no. 14, pp. 18115-18118, 2019.
[73] Y. Zhu, X. He, and Y. Mo, “First principles study on electrochemical and chemical stability of solid-state electrolytes–electrode interfaces in all-solid-state Li-ion batteries,” Journal of Materials Chemistry A, Vol. 4, no. 9, pp. 3253-3266, 2016.
[74] X. Tao, L. Yang, J. Liu, Z. Zang, P. Zeng, C. Zou, L. Yi, X. Chen, X. Liu, and X. Wang, “Preparation and performances of gallium-doped LLZO electrolyte with high ionic conductivity by rapid ultra-high-temperature sintering,” Journal of Alloys and Compounds, Vol. 937, pp. 168380, 2023.
[75] K. Zhang, T. Xu, H. Zhao, S. Zhang, Z. Zhang, Y. Zhang, Z. Du, and Z. Li, “Unveiling the roles of alumina as a sintering aid in Li-Garnet solid-state electrolytes,” International Journal of Energy Research, Vol. 44, no. 11, pp. 9177-9184, 2020.
[76] R. A. Jonson, and P. J. McGinn, “Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions,” Solid State Ionics, Vol. 323, pp. 49-55, 2018.
[77] X. Liu, Y. Jiang, X. Cheng, R. Yan, and X. Zhu, “Reduced synthesis temperature and significantly enhanced ionic conductivity for Li6.1Ga0.3La3Zr2O12 electrolyte prepared with sintering aid CuO,” Ionics, Vol. 28, no. 11, pp. 5071-5080, 2022.
[78] K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan, and Z. Ogumi, “Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery,” Journal of Power Sources, Vol. 196, no. 2, pp. 764-767, 2011.
[79] K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J. B. Goodenough, “Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12,” Chemistry of Materials, Vol. 28, no. 21, pp. 8051-8059, 2016.
[80] J. Wakasugi, H. Munakata, and K. Kanamura, “Thermal Stability of Various Cathode Materials against Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Electrolyte,” Electrochemistry, Vol. 85, no. 2, pp. 77-81, 2017.
[81] T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, and Y. Iriyama, “In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery,” Journal of Power Sources, Vol. 260, pp. 292-298, 2014.
[82] T. Liu, Y. Zhang, X. Zhang, L. Wang, S.-X. Zhao, Y.-H. Lin, Y. Shen, J. Luo, L. Li, and C.-W. Nan, “Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification,” Journal of Materials Chemistry A, Vol. 6, no. 11, pp. 4649-4657, 2018.
[83] W. Lu, M. Xue, and C. Zhang, “Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries,” Energy Storage Materials, Vol. 39, pp. 108-129, 2021.
[84] T. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier, and J. Janek, “Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid-state electrolytes as a Function of Temperature and Pressure,” Advanced Energy Materials, Vol. 9, no. 44, pp. 1902568, 2019.
[85] G. Ferraresi, S. Uhlenbruck, C.-L. Tsai, P. Novák, and C. Villevieille, “Engineering of Sn and Pre-Lithiated Sn as Negative Electrode Materials Coupled to Garnet Ta-LLZO Solid-state electrolytes for All-Solid-State Li Batteries,” Batteries & Supercaps, Vol. 3, no. 6, pp. 557-565, 2020.
[86] Z. Sadighi, J. S. Price, J. Qu, D. J. H. Emslie, G. A. Botton, and G. R. Goward, “Atomic Layer Deposition ZnO-Enhanced Negative Electrode for Lithium-Ion Battery: Understanding of Conversion/Alloying Reaction via 7Li Solid State NMR Spectroscopy,” Journal of The Electrochemical Society, Vol. 170, no. 1, pp. 010512, 2023.
[87] X. Yang, S. Tang, C. Zheng, F. Ren, Y. Huang, X. Fei, W. Yang, S. Pan, Z. Gong, and Y. Yang, “From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid-state electrolytes,” Advanced Functional Materials, Vol. 33, no. 3, pp. 2209120, 2023.
[88] P. Ghorbanzade, A. Pesce, K. Gómez, G. Accardo, S. Devaraj, P. López-Aranguren, and J. M. López del Amo, “Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes,” Journal of Materials Chemistry A, Vol. 11, no. 22, pp. 11675-11683, 2023.
[89] A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, “Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12,” Chemistry of Materials, Vol. 29, no. 18, pp. 7961-7968, 2017.
[90] H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, and X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, Vol. 61, pp. 119-125, 2019.
[91] Y. Tang, Z. Luo, T. Liu, P. Liu, Z. Li, and A. Lu, “Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid-state electrolytes,” Ceramics International, Vol. 43, no. 15, pp. 11879-11884, 2017.
[92] H. Xie, C. Li, W. H. Kan, M. Avdeev, C. Zhu, Z. Zhao, X. Chu, D. Mu, and F. Wu, “Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries,” Journal of Materials Chemistry A, Vol. 7, no. 36, pp. 20633-20639, 2019.
[93] D. Wang, G. Zhong, Y. Li, Z. Gong, M. J. McDonald, J.-X. Mi, R. Fu, Z. Shi, and Y. Yang, “Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate,” Solid State Ionics, Vol. 283, pp. 109-114, 2015.
[94] L. Han, M. L. Lehmann, J. Zhu, T. Liu, Z. Zhou, X. Tang, C.-T. Heish, A. P. Sokolov, P. Cao, X. C. Chen, and T. Saito, “Recent Developments and Challenges in Hybrid Solid-state electrolytes for Lithium-Ion Batteries,” Vol. 8, 2020.
[95] C.-T. Hsieh, C.-H. Chao, W.-J. Ke, Y.-F. Lin, H.-W. Liu, Y. A. Gandomi, S. Gu, C.-Y. Su, J.-K. Chang, J. Li, C.-C. Fu, B. Chandra Mallick, and R.-S. Juang, “Roll-To-Roll Atomic Layer Deposition of Titania Nanocoating on Thermally Stabilizing Lithium Nickel Cobalt Manganese Oxide Cathodes for Lithium Ion Batteries,” ACS Applied Energy Materials, Vol. 3, no. 11, pp. 10619-10631, 2020.
[96] A. Jena, Y. Meesala, S.-F. Hu, H. Chang, and R.-S. Liu, “Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications,” ACS Energy Letters, Vol. 3, no. 11, pp. 2775-2795, 2018.
[97] J.-H. Seo, Z. Fan, H. Nakaya, R. Rajagopalan, E. D. Gomez, M. Iwasaki, and C. A. Randall, “Cold sintering, enabling a route to co-sinter an all-solid-state lithium-ion battery,” Japanese Journal of Applied Physics, Vol. 60, no. 3, pp. 037001, 2021.
[98] D. Wang, Q. Sun, J. Luo, J. Liang, Y. Sun, R. Li, K. Adair, L. Zhang, R. Yang, S. Lu, H. Huang, and X. Sun, “Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries,” ACS Applied Materials & Interfaces, Vol. 11, no. 5, pp. 4954-4961, 2019.
[99] X. Huang, C. Shen, K. Rui, J. Jin, M. Wu, X. Wu, and Z. Wen, “Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet,” JOM, Vol. 68, no. 10, pp. 2593-2600, 2016.
[100] P. Barai, M. Wolfman, T. T. Fister, X. Wang, J. Garcia, H. Iddir, and V. Srinivasan, “Elucidation of Densification Experienced By LLZO Solid-state electrolytes,” ECS Meeting Abstracts, Vol. MA2020-02, no. 5, pp. 900, 2020.
[101] W. Xue, Y. Yang, Q. Yang, Y. Liu, L. Wang, C. Chen, and R. Cheng, “The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis,” RSC Advances, Vol. 8, no. 24, pp. 13083-13088, 2018.
[102] N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, “Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet,” RSC Advances, Vol. 4, no. 93, pp. 51228-51238, 2014.
[103] Y. Cao, Y.-Q. Li, and X.-X. Guo, “Densification and lithium ion conductivity of garnet-type Li7−xLa3Zr2−xTaxO12(x= 0.25) solid-state electrolytes,” Chinese Physics B, Vol. 22, no. 7, pp. 078201, 2013.
[104] Y. Li, Y. Cao, and X. Guo, “Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid-state electrolytes,” Solid State Ionics, Vol. 253, pp. 76-80, 2013.
[105] J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, and L. Nazar, “Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries,” Chemistry of Materials, Vol. 12, no. 11, pp. 3240-3242, 2000.
[106] H. Huang, S. C. Yin, T. Kerr, N. Taylor, and L. F. Nazar, “Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries,” Advanced Materials, Vol. 14, no. 21, pp. 1525-1528, 2002.
[107] G. Yang, H. Ji, H. Liu, B. Qian, and X. Jiang, “Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route,” Electrochimica Acta, Vol. 55, no. 11, pp. 3669-3680, 2010.
[108] L. S. Cahill, R. P. Chapman, J. F. Britten, and G. R. Goward, “7Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3,” The Journal of Physical Chemistry B, Vol. 110, no. 14, pp. 7171-7177, 2006.
[109] S. C. Yin, H. Grondey, P. Strobel, M. Anne, and L. F. Nazar, “Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3,” Journal of the American Chemical Society, Vol. 125, no. 34, pp. 10402-10411, 2003.
[110] C. Wang, H. Liu, and W. Yang, “An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method,” Journal of Materials Chemistry, Vol. 22, no. 12, pp. 5281-5285, 2012.
[111] C. Wang, Z. Guo, W. Shen, A. Zhang, Q. Xu, H. Liu, and Y. Wang, “Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials,” Journal of Materials Chemistry A, Vol. 3, no. 11, pp. 6064-6072, 2015.
[112] X. Du, W. He, X. Zhang, Y. Yue, H. Liu, X. Zhang, D. Min, X. Ge, and Y. Du, “Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres,” Journal of Materials Chemistry, Vol. 22, no. 13, pp. 5960-5969, 2012.
[113] Z. Wang, W. He, X. Zhang, Y. Yue, J. Liu, C. Zhang, and L. Fang, “Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes,” Journal of Power Sources, Vol. 366, pp. 9-17, 2017.
[114] 何崇銘, “磷酸鋰釩膠態電解質電池之研究,” 國立中興大學物理研究所碩士學位論文, 2014.
[115] M. Morcrette, J. Leriche, S. Patoux, C. Wurm, and C. Masquelier, “In Situ X-Ray Diffraction during Lithium Extraction from Rhombohedral and Monoclinic Li[sub 3]V[sub 2](PO[sub 4])[sub 3],” Electrochemical and Solid State Letters - ELECTROCHEM SOLID STATE LETT, Vol. 6, 2003.
[116] S. C. Yin, P. S. Strobel, H. Grondey, and L. F. Nazar, “Li2.5V2(PO4)3: A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature γ-Phase of Li3V2(PO4)3,” Chemistry of Materials, Vol. 16, no. 8, pp. 1456-1465, 2004.
[117] S.-C. Yin, H. Grondey, P. Strobel, H. Huang, and L. F. Nazar, “Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries,” Journal of the American Chemical Society, Vol. 125, no. 2, pp. 326-327, 2003.
[118] A. Van der Ven, J. Bhattacharya, and A. A. Belak, “Understanding Li Diffusion in Li-Intercalation Compounds,” Accounts of Chemical Research, Vol. 46, no. 5, pp. 1216-1225, 2013.
[119] N. Membreño, K. Park, J. B. Goodenough, and K. J. Stevenson, “Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive,” Chemistry of Materials, Vol. 27, no. 9, pp. 3332-3340, 2015.
[120] D. Petit, P. Colomban, G. Collin, and J. P. Boilot, “Fast ion transport in LiZr2(PO4)3: Structure and conductivity,” Materials Research Bulletin, Vol. 21, no. 3, pp. 365-371, 1986.
[121] M. Secchiaroli, F. Nobili, R. Tossici, G. Giuli, and R. Marassi, “Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly(acrylic acid) and d-(+)-glucose as carbon sources,” Journal of Power Sources, Vol. 275, pp. 792-798, 2015.
[122] Y. Q. Qiao, X. L. Wang, J. Y. Xiang, D. Zhang, W. L. Liu, and J. P. Tu, “Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source,” Electrochimica Acta, Vol. 56, no. 5, pp. 2269-2275, 2011.
[123] J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, and X. Pan, “Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source,” Electrochimica Acta, Vol. 55, no. 22, pp. 6879-6884, 2010.
[124] X. Zhang, R.-S. Kühnel, H. Hu, D. Eder, and A. Balducci, “Going nano with protic ionic liquids—the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries,” Nano Energy, Vol. 12, pp. 207-214, 2015.
[125] K. V. Kravchyk, D. T. Karabay, and M. V. Kovalenko, “On the feasibility of all-solid-state batteries with LLZO as a single electrolyte,” Scientific Reports, Vol. 12, no. 1, 2022.
[126] M. J. Wang, J. B. Wolfenstine, and J. Sakamoto, “Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate,” Advanced Functional Materials, Vol. 30, no. 10, pp. 1909140, 2020.
[127] M. Z. A. Munshi, and B. B. Owens, “Ionic Transport in Poly(ethylene oxide) (PEO)-LiX Polymeric Solid-state electrolytes,” Polymer Journal, Vol. 20, no. 7, pp. 577-586, 1988.
[128] A. Magistris, and K. Singh, “PEO-based polymer electrolytes,” Polymer International, Vol. 28, no. 4, pp. 277-280, 1992.
[129] L. Li, Y. Deng, and G. Chen, “Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries,” Journal of Energy Chemistry, Vol. 50, pp. 154-177, 2020.
[130] Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, and M. Chen, “Advances and prospects of PVDF based polymer electrolytes,” Journal of Energy Chemistry, Vol. 64, pp. 62-84, 2022.
[131] Y. Zhang, B. Yang, K. Li, D. Hou, C. Zhao, and J. Wang, “Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation,” RSC Advances, Vol. 7, no. 89, pp. 56183-56193, 2017.
[132] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, and S. Deki, “Studies on PVdF-based gel polymer electrolytes,” Journal of Power Sources, Vol. 88, no. 2, pp. 269-273, 2000.
[133] X. Cheng, J. Pan, Y. Zhao, M. Liao, and H. Peng, “Gel Polymer Electrolytes for Electrochemical Energy Storage,” Advanced Energy Materials, Vol. 8, no. 7, pp. 1702184, 2018.
[134] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, and S. Gopukumar, “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell,” Applied Physics A, Vol. 97, no. 4, pp. 811-819, 2009.
[135] M. Y. Zhang, M. X. Li, Z. Chang, Y. F. Wang, J. Gao, Y. S. Zhu, Y. P. Wu, and W. Huang, “A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery,” Electrochimica Acta, Vol. 245, pp. 752-759, 2017.
[136] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, Vol. 375, no. 1, pp. 1-27, 2011.
[137] B. Li, Q. Su, L. Yu, D. Wang, S. Ding, M. Zhang, G. Du, and B. Xu, “Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries,” ACS Applied Materials & Interfaces, Vol. 11, no. 45, pp. 42206-42213, 2019.
[138] J. Tan, J. Matz, P. Dong, J. Shen, and M. Ye, “A Growing Appreciation for the Role of LiF in the Solid-state electrolytes Interphase,” Advanced Energy Materials, Vol. 11, no. 16, pp. 2100046, 2021.
[139] W. Wang, E. Yi, A. J. Fici, R. M. Laine, and J. Kieffer, “Lithium Ion Conducting Poly(ethylene oxide)-Based Solid-state electrolytes Containing Active or Passive Ceramic Nanoparticles,” The Journal of Physical Chemistry C, Vol. 121, no. 5, pp. 2563-2573, 2017.
[140] W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, and Y. Cui, “Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers,” Nano Letters, Vol. 15, no. 4, pp. 2740-2745, 2015.
[141] H. Yang, J. Bright, B. Chen, P. Zheng, X. Gao, B. Liu, S. Kasani, X. Zhang, and N. Wu, “Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries,” Journal of Materials Chemistry A, Vol. 8, no. 15, pp. 7261-7272, 2020.
[142] J. Yu, S. C. T. Kwok, Z. Lu, M. B. Effat, Y.-Q. Lyu, M. M. F. Yuen, and F. Ciucci, “A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature,” ChemElectroChem, Vol. 5, no. 19, pp. 2873-2881, 2018.
[143] D. Yuan, C. Ji, X. Zhuge, A. Chai, L. Pan, Y. Li, Z. Luo, and K. Luo, “Organic-inorganic interlayer enabling the stability of PVDF-HFP modified Li metal for lithium-oxygen batteries,” Applied Surface Science, Vol. 613, pp. 155863, 2023.
[144] S. Bag, C. Zhou, P. J. Kim, V. G. Pol, and V. Thangadurai, “LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries,” Energy Storage Materials, Vol. 24, pp. 198-207, 2020.
[145] K. Kim, I. Park, S.-Y. Ha, Y. Kim, M.-H. Woo, M.-H. Jeong, W. C. Shin, M. Ue, S. Y. Hong, and N.-S. Choi, “Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries,” Electrochimica Acta, Vol. 225, pp. 358-368, 2017.
[146] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, and M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage,” Journal of Power Sources, Vol. 196, no. 22, pp. 9743-9750, 2011.
[147] P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors,” Nature Materials, Vol. 3, no. 7, pp. 476-481, 2004.
[148] Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu, and J. Zhang, “Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries,” ACS Applied Materials & Interfaces, Vol. 9, no. 35, pp. 29820-29828, 2017.
[149] M. B. Effat, Z. Lu, A. Belotti, J. Yu, Y.-Q. Lyu, and F. Ciucci, “Towards succinonitrile-based lithium metal batteries with long cycle life: The influence of fluoroethylene carbonate loading and the separator,” Journal of Power Sources, Vol. 436, pp. 226802, 2019.
[150] N. Lv, Q. Zhang, Y. Xu, H. Li, Z. Wei, Z. Tao, Y. Wang, and H. Tang, “PEO-based composite solid-state electrolytes for lithium battery with enhanced interface structure,” Journal of Alloys and Compounds, Vol. 938, pp. 168675, 2023.
[151] X. Liu, Q. Liang, L. Chen, J. Tang, J. Liu, M. Tang, and Z. Wang, “PEO-Based Solid-State Electrolytes Reinforced by High Strength, Interconnected MOF Networks,” ACS Applied Energy Materials, Vol. 6, no. 9, pp. 4881-4891, 2023.
[152] M. Mishra, C.-W. Hsu, P. Chandra Rath, J. Patra, H.-Z. Lai, T.-L. Chang, C.-Y. Wang, T.-Y. Wu, T.-C. Lee, and J.-K. Chang, “Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries,” Electrochimica Acta, Vol. 353, pp. 136536, 2020.
[153] C. Yao, X. Li, K. G. Neoh, Z. Shi, and E. T. Kang, “Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes,” Applied Surface Science, Vol. 255, no. 6, pp. 3854-3858, 2009.
[154] V. Sharova, A. Moretti, T. Diemant, A. Varzi, R. J. Behm, and S. Passerini, “Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries,” Journal of Power Sources, Vol. 375, pp. 43-52, 2018.
[155] Y. Lu, Y. Cai, Q. Zhang, L. Liu, Z. Niu, and J. Chen, “A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries,” Chemical Science, Vol. 10, no. 15, pp. 4306-4312, 2019.
[156] M. He, R. Guo, G. M. Hobold, H. Gao, and B. M. Gallant, “The intrinsic behavior of lithium fluoride in solid-state electrolytes interphases on lithium,” Proceedings of the National Academy of Sciences, Vol. 117, no. 1, pp. 73-79, 2020. |