博碩士論文 106329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.220.6.168
姓名 劉明松(Ming-Song Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鋰離子固態電池界面改進方法研究
(Research on the interface improvement in lithium-ion solid-state battery)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技與人口的提升,對能源的需求量日益漸增,然而因石化燃料的浩劫與對環境的影響,導致人們轉往使用綠色能源,而許多綠能卻又被地形、氣候等繁多限制所侷限,導致其效用不佳且無法攜帶,然而鋰電池雖不可發電,卻可將能源儲存在可攜帶裝置內,並且轉換效率高,而受到重視,例如常見的手機、手錶、電腦等,在新興科技中的電動車、無人機等也是極為重要的零組件,並隨著科技的進步,人們對於鋰離子電池的能量密度與功率密度的需求漸增,其附帶的使得鋰電池的安全性受到極大的重視,故學者們紛紛提出各種方法提升其性能,並期望可同時改善安全性上的問題,其中以固態電解質取代傳統液態電解質被認為是最有效的方法之一,然而固態電解質目前面臨兩大問題,即為界面電阻過高與離子導率不佳,然而學者們目前提出的解決方式皆會面臨新的挑戰,其中以加入界面層及共燒結為目前介面改善的主要研究方向之一。本研究著重在界面上的改善,故以幾項實驗來提出解決方案,其中有以助燒結劑的方式來改善固態電解質燒結溫度與正極不匹配的問題,使共燒結成為可能的選項之一,亦有評估/開發新的電解質材料,並想以單一成分的方式製備出全電池,以防止電極與電解質因共燒結元素互相擴散,而形成高阻抗層,最後還有製備開發優良的丁二腈基介面修飾劑,以此抑制電解質與鋰金屬的不良副反應,以上的研究皆有不錯的效果,為未來鋰電池固態電解質實際運用上提供個一些不錯的建議與經驗。
摘要(英) With the advancement of technology and population growth, the demand for energy is increasing steadily. However, the catastrophic effects of fossil fuels on the environment have led people to shift towards the use of green energy. Yet, many renewable energy sources are limited by various factors such as terrain and climate, resulting in their limited effectiveness and lack of portability. On the other hand, although lithium batteries cannot generate electricity, they can store energy in portable devices and have high conversion efficiency. They have gained significant attention in common devices like mobile phones, watches, and computers, as well as in emerging technologies such as electric vehicles and drones, where they serve as vital components. With technological advancements, the demand for higher energy density and power density in lithium batteries has increased, placing a great emphasis on their safety. As a result, researchers have proposed various methods to improve their performance while addressing safety issues. One of the most effective approaches is considered to be replacing traditional liquid electrolytes with solid-state electrolytes. However, solid-state electrolytes currently face two major challenges: high interfacial resistance and poor ion conductivity. The solutions proposed by researchers to overcome these challenges also encounter new obstacles. Among them, the addition of interface layers and co-sintering is currently the main research direction for interface improvement. This study focuses on interface enhancement and proposes solutions through several experiments. These experiments include the use of sintering aids to address the mismatch between the sintering temperature of the solid-state electrolyte and the positive electrode, making co-sintering a viable option. The evaluation and development of new electrolyte materials are also being explored with the aim of preparing a full cell using a single component to prevent electrode-electrolyte interdiffusion and the formation of high-impedance layers. Finally, efforts are being made to prepare and develop excellent acrylonitrile-based interface modifiers to suppress adverse reactions between the electrolyte and lithium metal. The studies above have shown promising results, providing valuable suggestions and experiences for the practical application of solid-state electrolytes in future lithium batteries.
關鍵字(中) ★ 鋰離子二次電池
★ 固態電解質
★ 界面修飾
關鍵字(英) ★ Lithium-ion secondary battery
★ Solid-state electrolytes
★ Interface modification
論文目次 摘要 vi
Summary vii
Table of Contents x
List of Figures xiii
List of Tables xvii
I. Preface and literature review 1
1. Introduction 1
2. Lithium-ion battery operating principle and development direction 3
2.1 How the battery works 3
2.2 History of battery development 4
3. Introduction to common solid-state electrolytes 7
3.1 Crystalline electrolyte 8
(a) Sulfide electrolyte 9
(b) Oxide electrolyte 10
(1) NASICON structure 10
(2) Garnet structure 10
(3) Peroskite structure 11
3.2 Glassy electrolyte 12
3.3 Glass-ceramic electrolyte 13
3.4 Composite electrolytes 13
4. Experimental equipment 15
4.1 Magnetic stirrer 15
4.2 Oven 15
4.3 Furnace tube 15
4.4 X-ray diffraction 16
4.5 Raman 17
4.6 Potentiostat and charge-discharge motor 17
4.7 Rotation and revolution mixer 18
4.8 Glove box 18
4.9 Scraper machine 19
4.10 Hydraulic press 19
4.11 Fume hood 20
4.12 Electrospinning 20
4.13 Scanning electron microscopy 20
4.14 X-ray photoelectron spectroscopy 21
4.15 Transmission electron microscopy 21
II. Research I: Reducing the sintering temperature of Li7La3Zr2O12 with sintering aids 23
1. Introduction to LLZO solid-state electrolytes 23
2. Recent research on LLZO solid-state electrolytes 24
2.1 LLZO electrochemical stability 25
2.2 Sintering temperature reduction 25
2.3 Electrode interface 26
2.4 Stability in air 27
3. Research on the use of sintering aids in lithium-ion solid-state electrolytes 28
4. Research motivation and purpose 30
5. Experimental drugs and procedures 31
5.1 Experimental drugs 31
5.2 Experimental procedure 31
a. Sintering aid preparation and full battery preparation 31
b. Compound electrolyte analysis 32
6. Results and discussion 34
6.1 Characterization of LLZO pristine solid-state electrolytes 34
6.2 Characterization of LLZO composite solid-state electrolytes 37
6.3 Full battery performance analysis 51
III. Research II: Li3V2(PO4)3 solid-state electrolytes development 56
1. Introduction of Li3V2(PO4)3 56
2. Recent research on LVP 59
3. Research motivation and purpose 61
4. Experimental drugs and procedures 62
4.1 Experimental drugs 62
4.2 Experimental procedure 62
a. Synthesis of monoclinic-LVP 62
b. Synthesis of rhombohedral-LVP 62
c. Synthesis of Zr-doped rhombohedral-LVP 62
d. Electrochemical measurement sample preparation 63
e. Sample analysis 63
5. Results and discussion 64
5.1 Analysis of LVP matrix powder 64
5.2 Analysis of LVP electrolyte 69
5.3 Analysis of Zr-doped rhombohedral-LVP electrolyte 72
IV. Research III: Effect of PVDF-HFP-based composite electrolyte and succinonitrole-based interface modifier 78
1. Introduction of PVDF and PVDF-HFP 78
1.1 PVDF-HFP based solid composite electrolyte 79
1.2 Interface modifier 81
a. Introduction of interface modifier-liquid electrolyte 83
b. Introduction of interface modifier-succinonitrile-based electrolyte 84
2. Research motivation and purpose 85
3. Experimental drugs and procedures 86
3.1 Experimental drugs 86
3.2 Experimental procedure 86
a. PVDF-HFP based composite polymer electrolyte 86
b. Interface modifier configuration 87
c. Electrochemical measurement cell assembly 87
d. Electrochemical analysis 88
4. Results and discussion 89
4.1 LLTO nanowire analysis 89
4.2 Analysis of PVDF-HFP composite solid-state electrolytes 91
4.3 Interface modified composite polymer electrolyte 94
4.4 Effects of modifiers on lithium deposition and PVDF-HFP composite electrolyte 100
4.5 Full battery electrical properties of PVDF-HFP-based composite polymer electrolyte 105
V. Three research conclusions and future prospects 112
VI. References 114
參考文獻 [1] P. R. Ehrlich, and J. Harte, “To feed the world in 2050 will require a global revolution,” Proceedings of the National Academy of Sciences, Vol. 112, no. 48, pp. 14743-14744, 2015.
[2] J. I. Pérez-Díaz, M. Chazarra, J. García-González, G. Cavazzini, and A. Stoppato, “Trends and challenges in the operation of pumped-storage hydropower plants,” Renewable and Sustainable Energy Reviews, Vol. 44, pp. 767-784, 2015.
[3] M. Budt, D. Wolf, R. Span, and J. Yan, “A review on compressed air energy storage: Basic principles, past milestones and recent developments,” Applied Energy, Vol. 170, pp. 250-268, 2016.
[4] C.-C. Lin, H.-C. Wu, J.-P. Pan, C.-Y. Su, T.-H. Wang, H.-S. Sheu, and N.-L. Wu, “Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode,” Electrochimica Acta, Vol. 101, pp. 11-17, 2013.
[5] H.-M. Liu, D. Saikia, H.-C. Wu, C.-Y. Su, T.-H. Wang, Y.-H. Li, J.-P. Pan, and H.-M. Kao, “Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries,” RSC Advances, Vol. 4, no. 99, pp. 56147-56155, 2014.
[6] C. Liao, L. Han, W. Wang, W. Li, X. Mu, Y. Kan, J. Zhu, Z. Gui, X. He, L. Song, and Y. Hu, “Non-Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultra-Stable Cycling and Fire-Safety Lithium Metal Batteries,” Advanced Functional Materials, Vol. 33, no. 17, pp. 2212605, 2023.
[7] G. Jiang, J. Liu, Z. Wang, and J. Ma, “Stable Non-flammable Phosphate Electrolyte for Lithium Metal Batteries via Solvation Regulation by the Additive,” Advanced Functional Materials, Vol. n/a, no. n/a, pp. 2300629, 2023.
[8] J. Lee, H.-S. Lim, X. Cao, X. Ren, W.-J. Kwak, I. A. Rodríguez-Pérez, J.-G. Zhang, H. Lee, and H.-T. Kim, “Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte,” ACS Applied Materials & Interfaces, Vol. 12, no. 33, pp. 37188-37196, 2020.
[9] X. Wang, L. Yang, N. Ahmad, L. Ran, R. Shao, and W. Yang, “Colloid Electrolyte with Changed Li+ Solvation Structure for High-Power, Low-Temperature Lithium-Ion Batteries,” Advanced Materials, Vol. 35, no. 12, pp. 2209140, 2023.
[10] J. Peng, D. Wu, P. Lu, Z. Wang, Y. Du, Y. Wu, Y. Wu, W. Yan, J. Wang, H. Li, L. Chen, and F. Wu, “High-safety, wide-temperature-range, low-external-pressure and dendrite-free lithium battery with sulfide solid-state electrolytes,” Energy Storage Materials, Vol. 54, pp. 430-439, 2023.
[11] H. Wan, Z. Wang, S. Liu, B. Zhang, X. He, W. Zhang, and C. Wang, “Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design,” Nature Energy, Vol. 8, no. 5, pp. 473-481, 2023.
[12] T. Yang, C. Wang, W. Zhang, Y. Xia, H. Huang, Y. Gan, X. He, X. Xia, X. Tao, and J. Zhang, “A critical review on composite solid-state electrolytes for lithium batteries: design strategies and interface engineering,” Journal of Energy Chemistry, 2023.
[13] Y. Jin, and P. J. McGinn, “Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method,” Journal of Power Sources, Vol. 196, no. 20, pp. 8683-8687, 2011.
[14] Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, and J. B. Goodenough, “Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries,” Angewandte Chemie International Edition, Vol. 56, no. 3, pp. 753-756, 2017.
[15] X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, “Negating interfacial impedance in garnet-based solid-state Li metal batteries,” Nature Materials, Vol. 16, no. 5, pp. 572-579, 2017.
[16] X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, and Y. Shen, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes,” Journal of the American Chemical Society, Vol. 139, no. 39, pp. 13779-13785, 2017.
[17] D. Deng, “Li‐ion batteries: basics, progress, and challenges,” Energy Science & Engineering, Vol. 3, no. 5, pp. 385-418, 2015.
[18] A. Volta, “XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S,” Philosophical Transactions of the Royal Society of London, Vol. 90, pp. 403-431, 1997.
[19] P. Kurzweil, “Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery,” Journal of Power Sources, Vol. 195, no. 14, pp. 4424-4434, 2010.
[20] J. Song, K. Xu, N. Liu, D. Reed, and X. Li, “Crossroads in the renaissance of rechargeable aqueous zinc batteries,” Materials Today, Vol. 45, pp. 191-212, 2021.
[21] R. Kandeeban, K. Saminathan, K. Manojkumar, C. G. Dilsha, and S. Krishnaraj, “Battery economy: Past, present and future,” Materials Today: Proceedings, Vol. 48, pp. 143-147, 2022.
[22] G. N. Lewis, and F. G. Keyes, “THE POTENTIAL OF THE LITHIUM ELECTRODE,” Journal of the American Chemical Society, Vol. 35, no. 4, pp. 340-344, 1913.
[23] M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,” Science, Vol. 192, no. 4244, pp. 1126-1127, 1976.
[24] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density,” Solid State Ionics, Vol. 3-4, pp. 171-174, 1981.
[25] 彰. 吉野, “炭素材料が電池負極になるまで,” 炭素, Vol. 1999, no. 186, pp. 45-49, 1999.
[26] C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, and J. B. Goodenough, “Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4–Li2Mn4O9–Li4Mn5O12System,” Journal of Solid State Chemistry, Vol. 123, no. 2, pp. 255-266, 1996.
[27] Z. Ruding, "鋰離子電池和鋰聚合物電池概述."
[28] " 一文看懂固態電池的發展現狀," 每日頭條, 2017.
[29] J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction,” Chemical Reviews, Vol. 116, no. 1, pp. 140-162, 2016.
[30] 劉佳兒, "無機固態電解質材料(上)," 工業材料雜誌-高能量固態電池與材料技術專題, 2018.
[31] R. Kanno, and M. Murayama, “Lithium Ionic Conductor Thio-LISICON: The Li[sub 2]S-GeS[sub 2]-P[sub 2]S[sub 5] System,” Journal of The Electrochemical Society, Vol. 148, no. 7, pp. A742, 2001.
[32] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, “A lithium superionic conductor,” Nature Materials, Vol. 10, no. 9, pp. 682-686, 2011.
[33] S. Yubuchi, M. Uematsu, M. Deguchi, A. Hayashi, and M. Tatsumisago, “Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid-state electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent,” ACS Applied Energy Materials, Vol. 1, no. 8, pp. 3622-3629, 2018.
[34] J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, “Fast Na+-ion transport in skeleton structures,” Materials Research Bulletin, Vol. 11, no. 2, pp. 203-220, 1976.
[35] H. Aono, “Ionic Conductivity of Solid-state electrolytes Based on Lithium Titanium Phosphate,” Journal of The Electrochemical Society, Vol. 137, no. 4, pp. 1023, 1990.
[36] Q. Zhang, F. Ding, W. Sun, and L. Sang, “Preparation of LAGP/P(VDF-HFP) polymer electrolytes for Li-ion batteries,” RSC Advances, Vol. 5, no. 80, pp. 65395-65401, 2015.
[37] P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, and J. Janek, “Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid-state electrolytes,” The Journal of Physical Chemistry C, Vol. 117, no. 41, pp. 21064-21074, 2013.
[38] R. Murugan, V. Thangadurai, and W. Weppner, “Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12,” Angewandte Chemie International Edition, Vol. 46, no. 41, pp. 7778-7781, 2007.
[39] J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, “Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure,” Journal of Solid State Chemistry, Vol. 182, no. 8, pp. 2046-2052, 2009.
[40] C. Bernuy-Lopez, W. Manalastas, J. M. Lopez del Amo, A. Aguadero, F. Aguesse, and J. A. Kilner, “Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics,” Chemistry of Materials, Vol. 26, no. 12, pp. 3610-3617, 2014.
[41] O. Bohnke, “The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application,” Solid State Ionics, Vol. 179, no. 1, pp. 9-15, 2008.
[42] S. Stramare, V. Thangadurai, and W. Weppner, “Lithium Lanthanum Titanates:  A Review,” Chemistry of Materials, Vol. 15, no. 21, pp. 3974-3990, 2003.
[43] C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, and W.-Q. Han, “Recent Advances in Inorganic Solid-state electrolytes for Lithium Batteries,” Frontiers in Energy Research, Vol. 2, pp. 25, 2014.
[44] C. W. Ban, and G. M. Choi, “The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates,” Solid State Ionics, Vol. 140, no. 3, pp. 285-292, 2001.
[45] K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, “Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12,” Electrochimica Acta, Vol. 80, pp. 133-139, 2012.
[46] Z. Zhang, and J. H. Kennedy, “Synthesis and characterization of the B2S3Li2S, the P2S5Li2S and the B2S3P2S5Li2S glass systems,” Solid State Ionics, Vol. 38, no. 3, pp. 217-224, 1990.
[47] A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, and M. Tatsumisago, “Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries,” Journal of Alloys and Compounds, Vol. 591, pp. 247-250, 2014.
[48] K. Senevirathne, C. S. Day, M. D. Gross, A. Lachgar, and N. A. W. Holzwarth, “A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure,” Solid State Ionics, Vol. 233, pp. 95-101, 2013.
[49] M. Tatsumisago, M. Nagao, and A. Hayashi, “Recent development of sulfide solid-state electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries,” Journal of Asian Ceramic Societies, Vol. 1, no. 1, pp. 17-25, 2013.
[50] M. Tatsumisago, and A. Hayashi, “Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries,” Solid State Ionics, Vol. 225, pp. 342-345, 2012.
[51] Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, “A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries,” Energy & Environmental Science, Vol. 7, no. 2, pp. 627-631, 2014.
[52] R.-c. Xu, X.-h. Xia, X.-l. Wang, Y. Xia, and J.-p. Tu, “Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries,” Journal of Materials Chemistry A, Vol. 5, no. 6, pp. 2829-2834, 2017.
[53] S. A. Pervez, M. A. Cambaz, V. Thangadurai, and M. Fichtner, “Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook,” ACS Applied Materials & Interfaces, Vol. 11, no. 25, pp. 22029-22050, 2019.
[54] B. Wu, S. Wang, W. J. Evans Iv, D. Z. Deng, J. Yang, and J. Xiao, “Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems,” Journal of Materials Chemistry A, Vol. 4, no. 40, pp. 15266-15280, 2016.
[55] Z. Xue, D. He, and X. Xie, “Poly(ethylene oxide)-based electrolytes for lithium-ion batteries,” Journal of Materials Chemistry A, Vol. 3, no. 38, pp. 19218-19253, 2015.
[56] F. Faglioni, B. V. Merinov, W. A. Goddard, and B. Kozinsky, “Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance,” Physical Chemistry Chemical Physics, Vol. 20, no. 41, pp. 26098-26104, 2018.
[57] P. Barai, K. Higa, and V. Srinivasan, “Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies,” Physical Chemistry Chemical Physics, Vol. 19, no. 31, pp. 20493-20505, 2017.
[58] P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang, R. K. Selvan, C. C. Chung, H. Jia, Y. Li, Y. Kiyak, N. Wu, and X. Zhang, “Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries,” Journal of Materials Chemistry A, Vol. 6, no. 10, pp. 4279-4285, 2018.
[59] P. C. Rath, M.-S. Liu, S.-T. Lo, R. S. Dhaka, D. Bresser, C.-C. Yang, S.-W. Lee, and J.-K. Chang, “Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3-Nanofiber-Dispersed Poly(vinylidene fluoride-co-hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium-Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer,” ACS Applied Materials & Interfaces, Vol. 15, no. 12, pp. 15429-15438, 2023.
[60] H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu, Y. Yang, and X. He, “Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review,” Nano-Micro Letters, Vol. 15, no. 1, pp. 42, 2023.
[61] V. Thangadurai, H. Kaack, and W. J. F. Weppner, “Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta),” Journal of the American Ceramic Society, Vol. 86, no. 3, pp. 437-440, 2003.
[62] S. Ramakumar, N. Janani, and R. Murugan, “Influence of lithium concentration on the structure and Li+ transport properties of cubic phase lithium garnets,” Dalton Transactions, Vol. 44, no. 2, pp. 539-552, 2015.
[63] J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, “Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12,” Chemistry Letters, Vol. 40, no. 1, pp. 60-62, 2010.
[64] S. Adams, and R. P. Rao, “Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25),” Journal of Materials Chemistry, Vol. 22, no. 4, pp. 1426-1434, 2012.
[65] C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, “Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor,” Inorganic Chemistry, Vol. 50, no. 3, pp. 1089-1097, 2011.
[66] L. Wang, Z. Tang, L. Ma, and X. Zhang, “High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method,” Electrochemistry Communications, Vol. 13, no. 11, pp. 1233-1235, 2011.
[67] T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, and J. Sakamoto, “Electrochemical Window of the Li-Ion Solid-state electrolytes Li7La3Zr2O12,” ACS Energy Letters, Vol. 2, no. 2, pp. 462-468, 2017.
[68] Y. Zhu, X. He, and Y. Mo, “Origin of Outstanding Stability in the Lithium Solid-state electrolytes Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations,” ACS Applied Materials & Interfaces, Vol. 7, no. 42, pp. 23685-23693, 2015.
[69] F. Han, Y. Zhu, X. He, Y. Mo, and C. Wang, “Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid-state electrolytes,” Advanced Energy Materials, Vol. 6, no. 8, pp. 1501590, 2016.
[70] C. L. Tsai, N. T. Thuy Tran, R. Schierholz, Z. Liu, A. Windmüller, C.-a. Lin, Q. Xu, X. Lu, S. Yu, H. Tempel, H. Kungl, S.-k. Lin, and R.-A. Eichel, “Instability of Ga-substituted Li7La3Zr2O12 toward metallic Li,” Journal of Materials Chemistry A, Vol. 10, no. 20, pp. 10998-11009, 2022.
[71] J. E. Ni, E. D. Case, J. S. Sakamoto, E. Rangasamy, and J. B. Wolfenstine, “Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet,” Journal of Materials Science, Vol. 47, no. 23, pp. 7978-7985, 2012.
[72] H.-Y. Li, B. Huang, Z. Huang, and C.-A. Wang, “Enhanced mechanical strength and ionic conductivity of LLZO solid-state electrolytes by oscillatory pressure sintering,” Ceramics International, Vol. 45, no. 14, pp. 18115-18118, 2019.
[73] Y. Zhu, X. He, and Y. Mo, “First principles study on electrochemical and chemical stability of solid-state electrolytes–electrode interfaces in all-solid-state Li-ion batteries,” Journal of Materials Chemistry A, Vol. 4, no. 9, pp. 3253-3266, 2016.
[74] X. Tao, L. Yang, J. Liu, Z. Zang, P. Zeng, C. Zou, L. Yi, X. Chen, X. Liu, and X. Wang, “Preparation and performances of gallium-doped LLZO electrolyte with high ionic conductivity by rapid ultra-high-temperature sintering,” Journal of Alloys and Compounds, Vol. 937, pp. 168380, 2023.
[75] K. Zhang, T. Xu, H. Zhao, S. Zhang, Z. Zhang, Y. Zhang, Z. Du, and Z. Li, “Unveiling the roles of alumina as a sintering aid in Li-Garnet solid-state electrolytes,” International Journal of Energy Research, Vol. 44, no. 11, pp. 9177-9184, 2020.
[76] R. A. Jonson, and P. J. McGinn, “Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions,” Solid State Ionics, Vol. 323, pp. 49-55, 2018.
[77] X. Liu, Y. Jiang, X. Cheng, R. Yan, and X. Zhu, “Reduced synthesis temperature and significantly enhanced ionic conductivity for Li6.1Ga0.3La3Zr2O12 electrolyte prepared with sintering aid CuO,” Ionics, Vol. 28, no. 11, pp. 5071-5080, 2022.
[78] K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan, and Z. Ogumi, “Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery,” Journal of Power Sources, Vol. 196, no. 2, pp. 764-767, 2011.
[79] K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J. B. Goodenough, “Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12,” Chemistry of Materials, Vol. 28, no. 21, pp. 8051-8059, 2016.
[80] J. Wakasugi, H. Munakata, and K. Kanamura, “Thermal Stability of Various Cathode Materials against Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Electrolyte,” Electrochemistry, Vol. 85, no. 2, pp. 77-81, 2017.
[81] T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, and Y. Iriyama, “In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery,” Journal of Power Sources, Vol. 260, pp. 292-298, 2014.
[82] T. Liu, Y. Zhang, X. Zhang, L. Wang, S.-X. Zhao, Y.-H. Lin, Y. Shen, J. Luo, L. Li, and C.-W. Nan, “Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification,” Journal of Materials Chemistry A, Vol. 6, no. 11, pp. 4649-4657, 2018.
[83] W. Lu, M. Xue, and C. Zhang, “Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries,” Energy Storage Materials, Vol. 39, pp. 108-129, 2021.
[84] T. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier, and J. Janek, “Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid-state electrolytes as a Function of Temperature and Pressure,” Advanced Energy Materials, Vol. 9, no. 44, pp. 1902568, 2019.
[85] G. Ferraresi, S. Uhlenbruck, C.-L. Tsai, P. Novák, and C. Villevieille, “Engineering of Sn and Pre-Lithiated Sn as Negative Electrode Materials Coupled to Garnet Ta-LLZO Solid-state electrolytes for All-Solid-State Li Batteries,” Batteries & Supercaps, Vol. 3, no. 6, pp. 557-565, 2020.
[86] Z. Sadighi, J. S. Price, J. Qu, D. J. H. Emslie, G. A. Botton, and G. R. Goward, “Atomic Layer Deposition ZnO-Enhanced Negative Electrode for Lithium-Ion Battery: Understanding of Conversion/Alloying Reaction via 7Li Solid State NMR Spectroscopy,” Journal of The Electrochemical Society, Vol. 170, no. 1, pp. 010512, 2023.
[87] X. Yang, S. Tang, C. Zheng, F. Ren, Y. Huang, X. Fei, W. Yang, S. Pan, Z. Gong, and Y. Yang, “From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid-state electrolytes,” Advanced Functional Materials, Vol. 33, no. 3, pp. 2209120, 2023.
[88] P. Ghorbanzade, A. Pesce, K. Gómez, G. Accardo, S. Devaraj, P. López-Aranguren, and J. M. López del Amo, “Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes,” Journal of Materials Chemistry A, Vol. 11, no. 22, pp. 11675-11683, 2023.
[89] A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, “Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12,” Chemistry of Materials, Vol. 29, no. 18, pp. 7961-7968, 2017.
[90] H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, and X. Sun, “In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries,” Nano Energy, Vol. 61, pp. 119-125, 2019.
[91] Y. Tang, Z. Luo, T. Liu, P. Liu, Z. Li, and A. Lu, “Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid-state electrolytes,” Ceramics International, Vol. 43, no. 15, pp. 11879-11884, 2017.
[92] H. Xie, C. Li, W. H. Kan, M. Avdeev, C. Zhu, Z. Zhao, X. Chu, D. Mu, and F. Wu, “Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries,” Journal of Materials Chemistry A, Vol. 7, no. 36, pp. 20633-20639, 2019.
[93] D. Wang, G. Zhong, Y. Li, Z. Gong, M. J. McDonald, J.-X. Mi, R. Fu, Z. Shi, and Y. Yang, “Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate,” Solid State Ionics, Vol. 283, pp. 109-114, 2015.
[94] L. Han, M. L. Lehmann, J. Zhu, T. Liu, Z. Zhou, X. Tang, C.-T. Heish, A. P. Sokolov, P. Cao, X. C. Chen, and T. Saito, “Recent Developments and Challenges in Hybrid Solid-state electrolytes for Lithium-Ion Batteries,” Vol. 8, 2020.
[95] C.-T. Hsieh, C.-H. Chao, W.-J. Ke, Y.-F. Lin, H.-W. Liu, Y. A. Gandomi, S. Gu, C.-Y. Su, J.-K. Chang, J. Li, C.-C. Fu, B. Chandra Mallick, and R.-S. Juang, “Roll-To-Roll Atomic Layer Deposition of Titania Nanocoating on Thermally Stabilizing Lithium Nickel Cobalt Manganese Oxide Cathodes for Lithium Ion Batteries,” ACS Applied Energy Materials, Vol. 3, no. 11, pp. 10619-10631, 2020.
[96] A. Jena, Y. Meesala, S.-F. Hu, H. Chang, and R.-S. Liu, “Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications,” ACS Energy Letters, Vol. 3, no. 11, pp. 2775-2795, 2018.
[97] J.-H. Seo, Z. Fan, H. Nakaya, R. Rajagopalan, E. D. Gomez, M. Iwasaki, and C. A. Randall, “Cold sintering, enabling a route to co-sinter an all-solid-state lithium-ion battery,” Japanese Journal of Applied Physics, Vol. 60, no. 3, pp. 037001, 2021.
[98] D. Wang, Q. Sun, J. Luo, J. Liang, Y. Sun, R. Li, K. Adair, L. Zhang, R. Yang, S. Lu, H. Huang, and X. Sun, “Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries,” ACS Applied Materials & Interfaces, Vol. 11, no. 5, pp. 4954-4961, 2019.
[99] X. Huang, C. Shen, K. Rui, J. Jin, M. Wu, X. Wu, and Z. Wen, “Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet,” JOM, Vol. 68, no. 10, pp. 2593-2600, 2016.
[100] P. Barai, M. Wolfman, T. T. Fister, X. Wang, J. Garcia, H. Iddir, and V. Srinivasan, “Elucidation of Densification Experienced By LLZO Solid-state electrolytes,” ECS Meeting Abstracts, Vol. MA2020-02, no. 5, pp. 900, 2020.
[101] W. Xue, Y. Yang, Q. Yang, Y. Liu, L. Wang, C. Chen, and R. Cheng, “The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis,” RSC Advances, Vol. 8, no. 24, pp. 13083-13088, 2018.
[102] N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, “Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet,” RSC Advances, Vol. 4, no. 93, pp. 51228-51238, 2014.
[103] Y. Cao, Y.-Q. Li, and X.-X. Guo, “Densification and lithium ion conductivity of garnet-type Li7−xLa3Zr2−xTaxO12(x= 0.25) solid-state electrolytes,” Chinese Physics B, Vol. 22, no. 7, pp. 078201, 2013.
[104] Y. Li, Y. Cao, and X. Guo, “Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid-state electrolytes,” Solid State Ionics, Vol. 253, pp. 76-80, 2013.
[105] J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, and L. Nazar, “Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries,” Chemistry of Materials, Vol. 12, no. 11, pp. 3240-3242, 2000.
[106] H. Huang, S. C. Yin, T. Kerr, N. Taylor, and L. F. Nazar, “Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries,” Advanced Materials, Vol. 14, no. 21, pp. 1525-1528, 2002.
[107] G. Yang, H. Ji, H. Liu, B. Qian, and X. Jiang, “Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route,” Electrochimica Acta, Vol. 55, no. 11, pp. 3669-3680, 2010.
[108] L. S. Cahill, R. P. Chapman, J. F. Britten, and G. R. Goward, “7Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3,” The Journal of Physical Chemistry B, Vol. 110, no. 14, pp. 7171-7177, 2006.
[109] S. C. Yin, H. Grondey, P. Strobel, M. Anne, and L. F. Nazar, “Electrochemical Property:  Structure Relationships in Monoclinic Li3-yV2(PO4)3,” Journal of the American Chemical Society, Vol. 125, no. 34, pp. 10402-10411, 2003.
[110] C. Wang, H. Liu, and W. Yang, “An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method,” Journal of Materials Chemistry, Vol. 22, no. 12, pp. 5281-5285, 2012.
[111] C. Wang, Z. Guo, W. Shen, A. Zhang, Q. Xu, H. Liu, and Y. Wang, “Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials,” Journal of Materials Chemistry A, Vol. 3, no. 11, pp. 6064-6072, 2015.
[112] X. Du, W. He, X. Zhang, Y. Yue, H. Liu, X. Zhang, D. Min, X. Ge, and Y. Du, “Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres,” Journal of Materials Chemistry, Vol. 22, no. 13, pp. 5960-5969, 2012.
[113] Z. Wang, W. He, X. Zhang, Y. Yue, J. Liu, C. Zhang, and L. Fang, “Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes,” Journal of Power Sources, Vol. 366, pp. 9-17, 2017.
[114] 何崇銘, “磷酸鋰釩膠態電解質電池之研究,” 國立中興大學物理研究所碩士學位論文, 2014.
[115] M. Morcrette, J. Leriche, S. Patoux, C. Wurm, and C. Masquelier, “In Situ X-Ray Diffraction during Lithium Extraction from Rhombohedral and Monoclinic Li[sub 3]V[sub 2](PO[sub 4])[sub 3],” Electrochemical and Solid State Letters - ELECTROCHEM SOLID STATE LETT, Vol. 6, 2003.
[116] S. C. Yin, P. S. Strobel, H. Grondey, and L. F. Nazar, “Li2.5V2(PO4)3:  A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature γ-Phase of Li3V2(PO4)3,” Chemistry of Materials, Vol. 16, no. 8, pp. 1456-1465, 2004.
[117] S.-C. Yin, H. Grondey, P. Strobel, H. Huang, and L. F. Nazar, “Charge Ordering in Lithium Vanadium Phosphates:  Electrode Materials for Lithium-Ion Batteries,” Journal of the American Chemical Society, Vol. 125, no. 2, pp. 326-327, 2003.
[118] A. Van der Ven, J. Bhattacharya, and A. A. Belak, “Understanding Li Diffusion in Li-Intercalation Compounds,” Accounts of Chemical Research, Vol. 46, no. 5, pp. 1216-1225, 2013.
[119] N. Membreño, K. Park, J. B. Goodenough, and K. J. Stevenson, “Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive,” Chemistry of Materials, Vol. 27, no. 9, pp. 3332-3340, 2015.
[120] D. Petit, P. Colomban, G. Collin, and J. P. Boilot, “Fast ion transport in LiZr2(PO4)3: Structure and conductivity,” Materials Research Bulletin, Vol. 21, no. 3, pp. 365-371, 1986.
[121] M. Secchiaroli, F. Nobili, R. Tossici, G. Giuli, and R. Marassi, “Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly(acrylic acid) and d-(+)-glucose as carbon sources,” Journal of Power Sources, Vol. 275, pp. 792-798, 2015.
[122] Y. Q. Qiao, X. L. Wang, J. Y. Xiang, D. Zhang, W. L. Liu, and J. P. Tu, “Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source,” Electrochimica Acta, Vol. 56, no. 5, pp. 2269-2275, 2011.
[123] J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, and X. Pan, “Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source,” Electrochimica Acta, Vol. 55, no. 22, pp. 6879-6884, 2010.
[124] X. Zhang, R.-S. Kühnel, H. Hu, D. Eder, and A. Balducci, “Going nano with protic ionic liquids—the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries,” Nano Energy, Vol. 12, pp. 207-214, 2015.
[125] K. V. Kravchyk, D. T. Karabay, and M. V. Kovalenko, “On the feasibility of all-solid-state batteries with LLZO as a single electrolyte,” Scientific Reports, Vol. 12, no. 1, 2022.
[126] M. J. Wang, J. B. Wolfenstine, and J. Sakamoto, “Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate,” Advanced Functional Materials, Vol. 30, no. 10, pp. 1909140, 2020.
[127] M. Z. A. Munshi, and B. B. Owens, “Ionic Transport in Poly(ethylene oxide) (PEO)-LiX Polymeric Solid-state electrolytes,” Polymer Journal, Vol. 20, no. 7, pp. 577-586, 1988.
[128] A. Magistris, and K. Singh, “PEO-based polymer electrolytes,” Polymer International, Vol. 28, no. 4, pp. 277-280, 1992.
[129] L. Li, Y. Deng, and G. Chen, “Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries,” Journal of Energy Chemistry, Vol. 50, pp. 154-177, 2020.
[130] Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, and M. Chen, “Advances and prospects of PVDF based polymer electrolytes,” Journal of Energy Chemistry, Vol. 64, pp. 62-84, 2022.
[131] Y. Zhang, B. Yang, K. Li, D. Hou, C. Zhao, and J. Wang, “Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation,” RSC Advances, Vol. 7, no. 89, pp. 56183-56193, 2017.
[132] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, and S. Deki, “Studies on PVdF-based gel polymer electrolytes,” Journal of Power Sources, Vol. 88, no. 2, pp. 269-273, 2000.
[133] X. Cheng, J. Pan, Y. Zhao, M. Liao, and H. Peng, “Gel Polymer Electrolytes for Electrochemical Energy Storage,” Advanced Energy Materials, Vol. 8, no. 7, pp. 1702184, 2018.
[134] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran, and S. Gopukumar, “LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell,” Applied Physics A, Vol. 97, no. 4, pp. 811-819, 2009.
[135] M. Y. Zhang, M. X. Li, Z. Chang, Y. F. Wang, J. Gao, Y. S. Zhu, Y. P. Wu, and W. Huang, “A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery,” Electrochimica Acta, Vol. 245, pp. 752-759, 2017.
[136] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, Vol. 375, no. 1, pp. 1-27, 2011.
[137] B. Li, Q. Su, L. Yu, D. Wang, S. Ding, M. Zhang, G. Du, and B. Xu, “Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries,” ACS Applied Materials & Interfaces, Vol. 11, no. 45, pp. 42206-42213, 2019.
[138] J. Tan, J. Matz, P. Dong, J. Shen, and M. Ye, “A Growing Appreciation for the Role of LiF in the Solid-state electrolytes Interphase,” Advanced Energy Materials, Vol. 11, no. 16, pp. 2100046, 2021.
[139] W. Wang, E. Yi, A. J. Fici, R. M. Laine, and J. Kieffer, “Lithium Ion Conducting Poly(ethylene oxide)-Based Solid-state electrolytes Containing Active or Passive Ceramic Nanoparticles,” The Journal of Physical Chemistry C, Vol. 121, no. 5, pp. 2563-2573, 2017.
[140] W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, and Y. Cui, “Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers,” Nano Letters, Vol. 15, no. 4, pp. 2740-2745, 2015.
[141] H. Yang, J. Bright, B. Chen, P. Zheng, X. Gao, B. Liu, S. Kasani, X. Zhang, and N. Wu, “Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries,” Journal of Materials Chemistry A, Vol. 8, no. 15, pp. 7261-7272, 2020.
[142] J. Yu, S. C. T. Kwok, Z. Lu, M. B. Effat, Y.-Q. Lyu, M. M. F. Yuen, and F. Ciucci, “A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature,” ChemElectroChem, Vol. 5, no. 19, pp. 2873-2881, 2018.
[143] D. Yuan, C. Ji, X. Zhuge, A. Chai, L. Pan, Y. Li, Z. Luo, and K. Luo, “Organic-inorganic interlayer enabling the stability of PVDF-HFP modified Li metal for lithium-oxygen batteries,” Applied Surface Science, Vol. 613, pp. 155863, 2023.
[144] S. Bag, C. Zhou, P. J. Kim, V. G. Pol, and V. Thangadurai, “LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries,” Energy Storage Materials, Vol. 24, pp. 198-207, 2020.
[145] K. Kim, I. Park, S.-Y. Ha, Y. Kim, M.-H. Woo, M.-H. Jeong, W. C. Shin, M. Ue, S. Y. Hong, and N.-S. Choi, “Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries,” Electrochimica Acta, Vol. 225, pp. 358-368, 2017.
[146] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, and M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage,” Journal of Power Sources, Vol. 196, no. 22, pp. 9743-9750, 2011.
[147] P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors,” Nature Materials, Vol. 3, no. 7, pp. 476-481, 2004.
[148] Q. Zhang, K. Liu, F. Ding, W. Li, X. Liu, and J. Zhang, “Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries,” ACS Applied Materials & Interfaces, Vol. 9, no. 35, pp. 29820-29828, 2017.
[149] M. B. Effat, Z. Lu, A. Belotti, J. Yu, Y.-Q. Lyu, and F. Ciucci, “Towards succinonitrile-based lithium metal batteries with long cycle life: The influence of fluoroethylene carbonate loading and the separator,” Journal of Power Sources, Vol. 436, pp. 226802, 2019.
[150] N. Lv, Q. Zhang, Y. Xu, H. Li, Z. Wei, Z. Tao, Y. Wang, and H. Tang, “PEO-based composite solid-state electrolytes for lithium battery with enhanced interface structure,” Journal of Alloys and Compounds, Vol. 938, pp. 168675, 2023.
[151] X. Liu, Q. Liang, L. Chen, J. Tang, J. Liu, M. Tang, and Z. Wang, “PEO-Based Solid-State Electrolytes Reinforced by High Strength, Interconnected MOF Networks,” ACS Applied Energy Materials, Vol. 6, no. 9, pp. 4881-4891, 2023.
[152] M. Mishra, C.-W. Hsu, P. Chandra Rath, J. Patra, H.-Z. Lai, T.-L. Chang, C.-Y. Wang, T.-Y. Wu, T.-C. Lee, and J.-K. Chang, “Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries,” Electrochimica Acta, Vol. 353, pp. 136536, 2020.
[153] C. Yao, X. Li, K. G. Neoh, Z. Shi, and E. T. Kang, “Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes,” Applied Surface Science, Vol. 255, no. 6, pp. 3854-3858, 2009.
[154] V. Sharova, A. Moretti, T. Diemant, A. Varzi, R. J. Behm, and S. Passerini, “Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries,” Journal of Power Sources, Vol. 375, pp. 43-52, 2018.
[155] Y. Lu, Y. Cai, Q. Zhang, L. Liu, Z. Niu, and J. Chen, “A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries,” Chemical Science, Vol. 10, no. 15, pp. 4306-4312, 2019.
[156] M. He, R. Guo, G. M. Hobold, H. Gao, and B. M. Gallant, “The intrinsic behavior of lithium fluoride in solid-state electrolytes interphases on lithium,” Proceedings of the National Academy of Sciences, Vol. 117, no. 1, pp. 73-79, 2020.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明