博碩士論文 106329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.149.213.209
姓名 林佳政(Chia-Cheng Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
(Three-dimensional micro features of copper-tin alloy with Cu6Sn5 in Nanocrystals prepared by electroplating and their characterization)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以即時影像導引微電鍍法來製作銅錫合金及Cu6Sn5三維微結構物。使用白金線作為陽極其線徑125 μm,以銅導線作為陰極其線徑為0.643 mm,陰陽兩極間距為80 μm,在含硫酸銅、硫酸亞錫、檸檬酸鈉與抗壞血酸之鍍液中進行電鍍,期望製作出含銅、錫兩金屬元素之微柱與微螺旋。研究目標,探討施以不同偏壓和在鍍液中添加不同濃度硫酸亞錫對微柱析鍍物表面形貌、化學組成、晶體結構以及還原電位之影響,進而尋找最佳之含銅、錫二元金屬微柱之電鍍條件,再以此條件出發,探討製作微型螺旋之可行性,並研究微螺旋析鍍角度與製程參數對微型螺旋尺寸與線徑均勻度之影響。
結果顯示:當析鍍偏壓越高、鍍液中硫酸亞錫濃度越高微柱錫含量也越高,當兩極間之偏壓設定在3.00 V、硫酸亞錫濃度控制為0.035 M,電鍍所得之含銅、錫二元金屬微柱,經分析其化學組成為含銅、錫(Cu: 88.2 ± 0.6 at. % 與Sn: 11.8± 0.6 at. %) 二元金屬之微柱,晶體結構分析顯示含Cu6Sn5相、Sn相二相,且根據Scherrer equation計算析鍍偏壓越大晶粒尺寸也隨之減少。以奈米壓痕儀測量其機械性質,其硬度為8.10 ± 0.40 GPa,楊氏模數為127.83 ± 5.20 GPa;以電化學分析量測其抗蝕性能,其腐蝕電流(Icorr)為0.27×10-2 mA/cm2,線性極化阻抗(RLP)為1435 ohm。
微螺旋析鍍結果顯示,析鍍角度30 °、製程參數4為銅錫合金及Cu6Sn5微螺旋之最佳析鍍參數,微螺旋線徑最為均勻,其d2/d1線徑比值為112 %,d3/d1線徑比值為129 %。
摘要(英) In this study, three-dimensional microstructures of copper-tin alloys and its intermetallic compounds were prepared by instant image guided micro-plating.
The electroplating system uses a platinum wire with a wire diameter of 125 μm as an anode, and a copper wire with a diameter of 0.643 mm as a cathode and Cathode and anode distance is 80 μm, which is electroplated in an electroplating bath containing copper sulfate, stannous sulfate, sodium citrate and ascorbic acid
to manufacture three dimensional micro-structure with two metal elements of copper and tin. The goal of this research is to firstly investigate the effect of applying different bias and adding different concentrations of stannous sulfate on the surface morphology, chemical composition, crystal structure and reduction potential of the micro-column in the plating bath, and then seek to find the best electroplating conditions of electroplating micro-columns with two metal elements of copper and tin. Then using these conditions to research the feasibility of making micro-helix, and studying the influence of micro-helix electroplating angle and process parameters on micro-helix size and the variation of wire diameter.
The results showed that When the plating bias is higher and the higher the concentration of stannous sulfate in the electroplating bath, the higher the micro-column tin content. When the bias is set at 3.00 V and the concentration of stannous sulfate is 0.035 M, the copper and tin binary metal micro-column obtained by electroplating have the best surface morphology. After analyzing, its chemical composition is Cu: 88.2 ± 0.6 at.% and Sn: 11.8±0.6 at.%. The crystal structure analysis shows that the crystal structure is Cu6Sn5, Sn coexisting. According to the Scherrer equation, the larger the plating bias, the smaller the grain size.The mechanical properties of the micro-column were measured by a nanoindenter. The hardness was estimated to be 8.10 ± 0.40 GPa and the Young′s modulus was 127.83 ± 5.20 Gpa. The corrosion resistance was measured by electrochemical measurement. The corrosion current (Icorr) was 0.27×10-2 mA/cm2, linear polarization resistance (RLP) is 1435 ohm.
The results of electroplating micro-helix showed that electrochemical deposition angle 30 ° and process parameter 4 is the best electroplating parameter of copper-tin intermetallic compound helix because the diameter of helix wire d1、d2、d3 are the most close, the d2 / d1 ratio is 112 %, the d3 / d1 ratio is 129 %.
關鍵字(中) ★ 微陽極導引電鍍
★ 銅錫微柱
★ 銅錫微螺旋
★ 奈米壓痕
★ 奈米晶
關鍵字(英) ★ Micro-anode guided electroplating
★ Copper-Tin micro-column
★ Copper-Tin micro-helix
★ Nano indentation
★ Nanocrystal
論文目次 目錄
摘要 i
ABSTRACT iii
誌謝 v
表目錄 x
圖目錄 xi
第一章、前言 - 1 -
1-1 研究背景 - 1 -
1-2 研究動機與目的 - 2 -
第二章、基礎理論與文獻回顧 - 3 -
2-1 電鍍原理 - 3 -
2-2 合金電鍍 - 3 -
2-3局部電化學沉積發展之文獻回顧 - 4 -
2-4 局部電化學沉積之本實驗室發展 - 6 -
2-5 銅錫合金電鍍 - 7 -
2-6 奈米壓痕測試估計材料之硬度與楊氏模數 - 8 -
第三章、研究方法 - 10 -
3-1 研究方法流程 - 10 -
3-2 即時影像導引微電鍍系統之架設 - 10 -
3-3 微陽極與陰極製備 - 12 -
3-4 鍍液調配 - 12 -
3-5 實驗步驟 - 12 -
3-5-1微柱析鍍參數探討 - 12 -
3-5-2微螺旋結構之析鍍角度與製程參數之探討 - 13 -
3-6 分析儀器 - 14 -
3-6-1鍍液酸鹼度量測 - 14 -
3-6-2形貌觀察 - 14 -
3-6-3化學組成分析 - 14 -
3-6-4晶體結構分析 - 15 -
3-6-5示差掃描熱分析 - 15 -
3-6-6奈米壓痕測試 - 15 -
3-6-7陰極極化曲線量測 - 16 -
3-6-8抗蝕性能量測 - 16 -
3-6-9電場模擬 - 17 -
第四章、結果 - 18 -
4-1 銅錫合金及Cu6Sn5微柱析鍍參數探討 - 18 -
4-1-1形貌觀察 - 19 -
4-1-2平均析鍍電流與平均析鍍速率之分析 - 19 -
4-1-3化學組成分析 - 20 -
4-1-4陰極極化分析 - 21 -
4-1-5晶體結構分析 - 22 -
4-1-6微柱之析鍍參數探討­示差掃描熱分析 - 22 -
4-1-7奈米壓痕測試 - 23 -
4-1-8抗蝕性能量測 - 24 -
4-1-9電場強度模擬 - 25 -
4-2 微螺旋析鍍參數探討 - 25 -
4-2-1 微螺旋直徑與螺距量測 - 26 -
4-2-2 微螺旋線徑量測 - 27 -
4-2-3 微螺旋析鍍之電場強度模擬 - 27 -
第五章、討論 - 29 -
5-1 析鍍參數對析鍍微柱之影響 - 29 -
5-1-1 析鍍偏壓對微柱平均柱徑之影響 - 29 -
5-1-2 析鍍參數對微柱錫含量之影響 - 29 -
5-1-3 析鍍偏壓對微柱晶體尺寸之影響 - 30 -
5-1-4 探討XRD分析和DSC分析結果 - 30 -
5-1-5 析鍍參數對機械性質之影響 - 31 -
5-1-6 析鍍參數對抗蝕性能之影響 - 31 -
5-1-7 最佳析鍍參數之選擇 - 32 -
5-2 析鍍角度與製程參數對析鍍微螺旋之影響 - 33 -
5-2-1 析鍍角度與製程參數對螺旋直徑與螺距之影響 - 33 -
5-2-2 電場強度與螺旋線徑均勻度之關係 - 33 -
第六章、結論與前瞻 - 35 -
參考文獻 - 37 -


表目錄
表3-1電鍍液中硫酸亞錫為0.035 M之成分 - 42 -
表3-2電鍍液中硫酸亞錫為0.040 M之成分 - 42 -
表3-2電鍍液中硫酸亞錫為0.045 M之成分 - 43 -

表4-1 各析鍍參數析鍍微柱之柱徑量測結果 - 43 -
表4-2 各析鍍參數之平均析鍍電流量測結果 - 44 -
表4-3 各析鍍參數之平均析鍍速率量測結果 - 44 -
表4-4 各析鍍參數析鍍的微柱之EDS分析結果 - 45 -
表4-5 各析鍍參數之X光繞射圖之主峰半高寬 - 45 -
表4-6 各析鍍參數之X光繞射圖主峰2θ角度 - 46 -
表4-7 各析鍍參數由Scherrer equation計算之晶粒尺寸大小 - 46 -
表4-8固定硫酸亞錫濃度0.035 M下,不同析鍍偏壓析鍍的微柱之硬度與楊氏模數(單位: GPa) - 47 -
表4-9固定硫酸亞錫濃度0.040 M下,不同析鍍偏壓析鍍的微柱之硬度與楊氏模數(單位: GPa) - 47 -
表4-10固定硫酸亞錫濃度0.045 M下,不同析鍍偏壓析鍍的微柱之硬度與楊氏模數(單位: GPa) - 48 -
表4-11各參數條件析鍍的微柱之腐蝕電流量測結果 - 48 -
表4-12各參數條件析鍍的微柱之線性極化阻抗量測結果 - 49 -
表4-13不同析鍍偏壓下,Comsol模擬電場之中心最大值 - 49 -
表4-14以不同析鍍角度與製程參數析鍍微螺旋之螺旋直徑量測結果 - 50 -
表4-15以不同析鍍角度與製程參數析鍍微螺旋之螺距量測結果 - 50 -
表4-16以析鍍角度30 °於不同製程參數析鍍微螺旋之線徑量測結果 - 51 -
表4-17以析鍍角度50°於不同製程參數析鍍微螺旋之線徑量測結果 - 51 -
表4-18以析鍍角度70°於不同製程參數析鍍微螺旋之線徑量測結果 - 52 -
表4-19以不同析鍍角度與製程參數析鍍微螺旋之平均線徑量測結果 - 52 -
表4-20不同製程參數與析鍍角度於d1、d2、d3之電場大小 - 53 -




圖目錄
圖2-1銅錫合金平衡相圖[49] - 54 -
圖2-2奈米壓痕負載-深度圖[41] - 55 -

圖3-1第一部分實驗流程圖 - 55 -
圖3-2第二部分實驗流程圖 - 56 -
圖3-3微電鍍微柱設備示意圖 - 56 -
圖3-4 微電鍍微螺旋設備示意圖 - 57 -
圖3-5 微陽極製備示意圖 - 57 -
圖3-6 陰極製備示意圖 - 58 -
圖3-7 微螺旋析鍍角度示意圖 - 58 -
圖3-8 微螺旋製程參數示意圖 - 59 -
圖3-9 微螺旋幾何尺寸示意圖 - 59 -
圖3-10 陰極極化曲線量測設備示意圖 - 60 -
圖3-11 腐蝕電化學量測設備示意圖 - 60 -
圖3-12 析鍍微柱之電場強度模擬結果 - 61 -
圖3-13 析鍍微螺旋之電場強度模擬結果 - 62 -

圖 4-1 析鍍參數析鍍的微柱之放大40倍SEM影像,(a)~(d)為固定硫酸亞錫濃度0.035 M時,析鍍偏壓由3.00 V上升至3.45 V;(e)~(h)為定硫酸亞錫濃度0.040 M時,析鍍偏壓由3.00 V上升至3.45 V;(i)~(l)為定硫酸亞錫濃度0.045 M時,析鍍偏壓由3.00 V上升至3.45 V - 63 -
圖4-2 各析鍍參數析鍍的微柱之平均柱徑分析結果 - 64 -
圖4-3 各析鍍參數之平均析鍍電流分析結果 - 64 -
圖4-4 各析鍍參數之平均析鍍速率分析結果 - 65 -
圖4-5 各析鍍參數析鍍微柱之EDS分析結果 - 65 -
圖4-6將鍍液之金屬離子逐一抽離之陰極極化量測結果 - 66 -
圖4-7 將鍍液之金屬離子逐一抽離之陰極極化量測結果 - 66 -
圖4-8 將鍍液之金屬離子逐一抽離之陰極極化量測結果 - 67 -
圖4-9 硫酸亞錫濃度(a)0.035 M、(b) 0.040 M、(c) 0.045 M下不同析鍍偏壓析鍍的微柱之X光繞射圖譜 - 68 -
圖4-10 硫酸亞錫濃度為0.040 M時,各析鍍偏壓之DSC曲線 - 69 -
圖4-11 硫酸亞錫濃度(a)0.035 M、(b) 0.040 M、(c) 0.045 M下,不同析鍍偏壓析鍍的微柱之奈米壓痕負載力-壓痕深度曲線圖 - 71 -
圖4-12 硫酸亞錫濃度(a)0.035 M、(b) 0.040 M、(c) 0.045 M下,不同析鍍偏壓析鍍微柱之塔弗極化量測結果 - 73 -
圖4-13 硫酸亞錫濃度(a)0.035 M、(b) 0.040 M、(c) 0.045 M下,不同析鍍偏壓析鍍微柱之線性極化量測結果 - 75 -
圖4-14 不同析鍍偏壓之電場強度模擬結果 - 76 -
圖4-15 不同析鍍角度與製程參數製得的微螺旋之影像圖,(a)析鍍角度: 30 °、製程參數: 2,(b)析鍍角度: 30 °、製程參數: 3,(c)析鍍角度: 30 °、製程參數: 4,(d)析鍍角度: 50 °、製程參數: 2,(e)析鍍角度: 50 °、製程參數: 3,(f)析鍍角度: 50 °、製程參數: 4,(g)析鍍角度: 70 °、製程參數: 2,(h)析鍍角度: 70 °、製程參數: 3,(i)析鍍角度: 70 °、製程參數: 4。 - 77 -

圖5-1改變析鍍偏壓之電場和微柱柱徑關係圖。 - 78 -
圖5-2電場和微柱柱徑關係圖。 - 78 -
圖5-3 各析鍍參數與微柱硬度之關係圖 - 79 -
圖5-4 各析鍍參數與微柱楊氏模數之關係圖 - 79 -
圖5-5 化學組成與硬度、楊氏模數之關係圖 - 80 -
圖5-6化學組成與腐蝕電流(Icorr)大小之關係圖。 - 80 -
圖5-7化學組成與與線性極化阻抗(RLP)大小之關係圖。 - 81 -
圖5-8 析鍍角度及製程參數與微螺旋直徑之關係圖。 - 81 -
圖5-9 析鍍角度及製程參數與微螺旋間距分析圖。 - 82 -
參考文獻 1.B. Rainer, K. Hahn, and J. Stienecker, “Technology description methods for
LIGA processes ”, Journal of Micromechanics and Microengineering, 5, 2, 1995, pp. 196.
2.A. Michael, J. Arnold, W. Ehrfeld, “Laser LIGA: a cost-saving process for
flexible production of microstructures ” ,Micromachining and Microfabrication Process Technology, 2639, pp. 164-174, Austin, America, 1995.
3.S. Ishizaka, “Laser LIGA-excimer laser micro-structuring and replication”, Lambda Phys. Highlights, 45, 1994, pp. 1-3.
4.P. Rai-Choudhury, Handbook of microlithography, micromachining, and
microfabrication: microlithography., Society of Photo Optical., Washington, 1997.
5.R. Dermanaki, K. Chizari, D. Therriault, “Three-dimensional printing of
freeform helical microstructures: a review ”, Nanoscale, 6, 18, 2014, pp. 10470-10485.
6.X. Li, C. Wang, W. Zhang, Y. Li, “Fabrication and characterization of
porous Ti6Al4V parts for biomedical applications using electron beam melting process ”, Materials Letters, 63, 3-4, 2009, pp. 403-405.
7.L.S. Bertola, W.K. Júniora, C. Aumund-Kopp, “Medical design: direct
metal laser sintering of Ti–6Al–4V ”, Materials & Design, 31, 8, 2010, pp. 3982-3988.
8.郭哲男,蘇郁倫,「電子束3D列印技術」,科學發展,523,2016,16-
19頁。
9.J.D. Madden, I.W . Hunter, “Three-dimensional microfabrication by
localized electrochemical deposition ”, Journal of microelectromechanical systems, 5, 1, 1996, pp. 24-32.
10.G. Zangari, “Electrodeposition of alloys and compounds in the era of A. Brenner, Electrodeposition of alloys: principles and practice., Elsevier, 1963
11.A. Brenner, Electrodeposition of alloys: principles and practice., Elsevier,
1963.
12.F.C. Walsh, C.T.J. Low, “A review of developments in the electrodeposition of tin-copper alloys ”, Surface and Coatings Technology, 304, 2016, pp. 246-262.
13.D. Padhi, S. Gandikota, Hoa B. Nguyen, C. Guirk, S. Ramanathan, “ Electrodeposition of copper–tin alloy thin films for microelectronic applications ”, Electrochimica acta, 48, 8, 2003, pp. 935-943.
14.A.N. Correia, M.X. Façanha, P. de Lima-Neto, “Cu–Sn coatings obtained from pyrophosphate-based electrolytes ”, Surface and Coatings Technology, 201, 16-17, 2007, pp. 7216-7221.
15.A.E. Rehim, S.M. Sayyah, M.M. El Deeb, “Tin-copper alloy electrodeposition from acidic gluconate baths ”, Transactions of the IMF, 78, 2, 2000, pp. 74-78.
16.C. Han, Q. Liu, D.G. Ivey, “Development of simple electrolytes for the electrodeposition and electrophoretic deposition of Pb-free, Sn-based alloy solder films ”, CS MANTECH Conference, Austin, Texas, USA, 2007.
17.G. Heidari, S.M. Mousavi Khoie, M.E. Abrishami, M. Javanbakht, “Electrodeposition of Cu–Sn alloys: theoretical and experimental approaches ”, Journal of Materials Science: Materials in Electronics, 26, 3, 2015, pp. 1969-1976.
18.R. Juškėnas, Z. Mockus, S. Kanapeckaitė, G. Stalnionis, A. Survila, “XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys ”, Electrochimica Acta, 52, 3, 2006, pp. 928-935.
19.E.M. El-Giar, D.J. Thomson, “Localized electrochemical plating of interconnectors for microelectronics ”, IEEE WESCANEX 97: Communications, Power and Computing. Conference Proceedings, pp. 327-
332, Winnipeg, Manitoba, 1997.
20.游絢博,「陽極單軸間歇運動下之直流、脈衝微電析鎳」,國立中央大學,碩士論文,2000。
21.S.K. Seol, J.M. Yi, X. Jin, C.C. Kim, J.H. Je, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition ”, electrochemical and solid-state letters, 7, 9,
2004, pp. C95-C97.
22.S.K. Seol, A.R. Pyun, Y. Hwu, G. Margaritondo, J.‐H. Je, “Localized Electrochemical Deposition of Copper Monitored Using Real‐Time X‐ray Microradiography ”, Advanced Functional Materials, 15, 6, 2005, pp. 934-937.
23.S.K. Seol, J.T. Kim, J.H. Je, Y. Hwu, “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition ”,
Electrochemical and solid-state letters, 10, 5, 2007, pp. C44-C46.
24.C.S. Lin, C.Y. Lee, J.H. Yang, “Improved copper microcolumn fabricated by localized electrochemical deposition ”, Electrochemical and Solid-State Letters, 8, 9, 2005, pp. C125-C129.
25.C.Y. Lee, C.S. Lin, B.R. Lin, “Localized electrochemical deposition process improvement by using different anodes and deposition directions ”, Journal of Micromechanics and Microengineering, 18, 10, 2008, pp.105-008.
26.S. Gan, M. Rahman, “Fabrication of complex shape electrodes by localized electrochemical deposition ”, Journal of Materials Processing Technology, 209, 9, 2009, pp. 4453-4458.
27.F. Wang, H. He, “Parametric electrochemical deposition of controllable morphology of copper micro-columns ”, Journal of The Electrochemical Society, 163, 10, 2016, pp. E322-E327.
28.F. Wang, H. Xiao, H. He, “Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns ”, Scientific reports, 6, 2016, pp. 260-270.
29.B. Abishek, Kamaraj, H. Shrestha, E. Speck, M. Sundaram, “Experimental study on the porosity of electrochemical nickel deposits ”, Procedia Manufacturing, 10, 2017, pp. 478-485.
30.F. Wang, J. Sun, D. Liu, “Effect of Voltage and Gap on Micro-Nickel-Column Growth Patterns in Localized Electrochemical Deposition ”, Journal of The Electrochemical Society, 164, 6, 2017, pp. D297-D301.
31.F. Wang, H. Bian, F. Wang, “Fabrication of Micro Copper Walls by Localized Electrochemical Deposition through the Layer by Layer Movement of a Micro Anode ”, Journal of The Electrochemical Society, 164, 12, 2017, pp. D758-D763.
32.J.C. Lin, S.B. Jang, D.L. Lee, “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating ”, Journal of Micromechanics and Microengineering, 15, 12, 2005, pp. 2405.
33.T.K. Chang, J.C. Lin, J.H. Yang, “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition ”, Journal of Micromechanics and Microengineering, 17, 11, 2007, pp. 2336.
34.J.H. Yang, J.C. Lin, T.K. Chang, G.Y. Lai, “Assessing the degree of localization in localized electrochemical deposition of copper ”, Journal of Micromechanics and Microengineering, 18, 5, 2008, pp. 055023.
35.J.C. Lin, T.K. Chang, J.H. Yang, D.L. Lee, “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement ”, Journal of Micromechanics and Microengineering, 19, 1, 2008, pp. 015030.
36.J.H. Yang, J.C. Lin, T.K. Chang, “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process ”, Journal of Micromechanics and Microengineering, 19, 2, 2009, pp. 025015.
37.J.C. Lin, T.K. Chang, J.H. Yang, “On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating ”, Electrochimica Acta, 54, 24, 2009, pp. 5703-5708.
38.T.C. Chen, Y.R. Hwang, J.C. Lin, “The Development of a Real-Time Image Guided Micro Electroplating System ”, Int. J. Electrochem. Sci, 5, 2010, pp. 1810-1820.
39.Y.J. Ciou, Y.R. Hwang, J.C. Lin, “Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing ”, ECS Journal of Solid State Science and Technology, 3, 7, 2014, pp. P268-P271.
40.顧乃華,「以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析」,國立中央大學,碩士論文,2005。
41.張瑞慶,「奈米壓痕技術與應用」,聖約翰科技大學。
42.楊仁泓,局部電化學沈積法之一維結構製程及機械性質量測」,大葉大學,碩士論文,2004。
43.K.R. Mamaghani, S.M. Naghib, “The Effect of Stirring Rate on Electrodeposition of Nanocrystalline Nickel Coatings and their Corrosion Behaviors and Mechanical Characteristics ”, Int. J. Electrochem. Sci, 12, 2017, pp. 5023-5035.
44.H. Natter, R. Hempelmann, “Nanocrystalline Copper by Electrodeposition: The Effects of Organic Additives, Bath Temperature, and pH ”, The Journal of Physical Chemistry, 100, 50, 1996, p. 19525-19532.
45.A. Varea, E. Pellicer, S. Pané, “Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films ”, Int. J. Electrochem. Sci, 7, 2012, pp. 1288-1302.
46.L.C. Tsao, C.W. Chen, “Corrosion characterization of Cu–Sn intermetallics in 3.5 wt.% NaCl solution ”, Corrosion Science, 63, 2012, pp. 393-398.
47.W. Xu, X. Lu, B. Zhang, “Effects of Porosity on Mechanical Properties and Corrosion Resistances of PM-Fabricated Porous Ti-10Mo Alloy ”, Metals, 8, 3, 2018, pp. 188.
48.O.M.S. Quintero, W.A. Chaparro, L. Ipaz, “Influence of the microstructure on the electrochemical properties of Al-Cr-N coatings deposited by co-sputtering method from a Cr-Al binary target ”, Materials Research, 16, 1, 2013, pp. 204-214.
49.S. Charlie, “A new understanding of the heat treatment of Nb-Sn superconducting wires ”, The Florida State University, PhD Thesis, 2017.
50.劉謹綸,「以微電鍍法製備三維銅錫介金屬化合物微結構」,國立中央大學,碩士論文,2018。
指導教授 林景崎(Jing-Chie Lin) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明