博碩士論文 106382609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.17.110.42
姓名 艾譜圖(I Putu Ellsa Sarassantika)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用槓桿機制放大阻尼器變形以提升斜撐構架耐震性能之研究
(Evaluation and Enhancement on the Seismic Performance of Framed Structures with Amplified-Deformation Lever-Armed Damper in Braces)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-30以後開放)
摘要(中) 本研究的目的是開發和驗證一種新型的斜撐設計,以提高結構性能,此斜撐包括鉸接桿件和一組槓桿臂阻尼器 (LAD) ,稱為 LAD-Brace。 槓桿臂阻尼器具有有效的旋轉機制,可在變斷面消能板中產生均勻的降伏區,並可藉由槓桿機制放大阻尼器變形。此設計中,消能板在反覆載重試驗和固定振幅下均可有效消散能量,提升斜撐之承載性能。此外,本研究亦針對應用LAD-Brace之構架在反覆載重及不同地震下之耐震性能,進行探討。試驗結果顯示,LAD-Braces 有效提高了結構的強度、等效黏滯阻尼、能量消散及強健性。 本研究中另外使用 11 組不同的地震評估應用LAD-Brace之多跨、多層構架耐震行為。依據歷時反應分析結果可知,與對應的抗彎矩構架相比,應用LAD-Brace 之斜撐構架的最大層間位移和殘餘位移明顯減小, LAD 斜撐構架之基底剪力亦可保持在等於或小於相應之抗彎矩構架之值。前述結果顯示,使用 LAD-Brace 以提升構架耐震性能為一可行之設計。
摘要(英) The purpose of this research was to develop and validate a novel brace design for improving structural performance that included a hinged truss member and a set of lever-armed dampers (LAD), named the LAD-Brace. The lever-armed damper was created with an adequate rotation mechanism to produce uniform yield zones and amplified deformation in the tapered energy dissipation plate. The energy dissipation plates were used to test LAD-Braces with a variety of geometries under cyclic loads and constant peak amplitudes. On framed structures with and without LAD-Braces, cyclical loading tests and time-history response simulations using different earthquake ground motions were carried out. The test results were used to derive analytical expressions for yield strength estimation that were successfully validated. According to the test results, sufficient strength, efficient equivalent viscous damping, significant energy dissipation, and resilience were all attained at once. By using 11 different earthquake excitations, multi-bay, multi-story framed structural simulations were used to assess the applicability of the LAD-Brace structural system. The maximum story drifts and residual drifts of LAD-Braced frames were significantly less when compared to the corresponding SMRFs, according to the time-history structural responses. The LAD-Braced frame base shears were maintained at magnitudes equal to or less than the values of the corresponding SMRFs. This phenomenon, along with the significant decreases in story drifts and residual drifts, supported the use of LAD-Brace in the improvement of framed structural performance.
關鍵字(中) ★ 槓桿臂阻尼器
★ 變斷面消能板
★ 反覆載重試驗
★ 耐震性能
★ 強健性
★ 歷時反應
關鍵字(英) ★ Lever-armed damper
★ Tapered energy dissipation plate
★ Cyclic load tests
★ Seismic performance
★ Resilience
★ Time-history response
論文目次 摘要 i
ABSTRACT ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables xiii
Explanation of Symbols xiv
Chapter I: Introduction 1
1.1 Background and motivations 1
1.2 Objectives 3
Chapter II: Literature Review 5
2.1 Steel Moment resisting frame responses 5
2.2 Braced frame responses 6
2.3 Bracing design development 7
2.4 Metallic dampers 8
Chapter III: Investigation of Lever-Armed Damper (LAD) Performances 10
3.1 Overview 10
3.2 LAD-Brace design 10
3.2.1 Deformation amplification mechanism in LAD 10
3.2.2 Energy dissipation plate profile determination 13
3.2.3 Lever-arm plates shape, truss member dimension, and slotted connection design 16
3.3 Experimental program 19
3.3.1 Test specimens 19
3.3.2 Instrumentations 21
3.3.3 Test setup 23
3.3.4 Loading Protocols 23
3.3.5 Failure modes 24
3.3.6 Strength 26
3.3.7 Stiffness 28
3.3.8 Energy dissipation 29
3.3.9 Equivalent viscous damping 30
3.3.11 Performance evaluation 30
3.3.10 Resilience 31
Chapter IV: Investigation of LAD-Braced Frame Performance 33
4.1 Overview 33
4.2 LAD-Braced Frame (LF) design 33
4.2.1 Moment resisting frame design 33
4.2.2 LAD-Brace in moment resisting frame 34
4.2.3 Computer model 35
4.3 Experimental program 37
4.3.1 Test specimens 37
4.3.2 Test procedures 38
4.3.3 Failure mode 39
4.3.4 LAD-Braced frames performance 40
Chapter V: Seismic Analyses of Multi-Story LAD-Braced Frames 42
5.1 Overview 42
5.2 Frame structural model 42
5.3 Ground motions 43
5.4 Brace determination in multi-story frames 44
5.5 Performance under dynamic excitation 45
5.5.1 Inter-story drift reduction 46
5.5.2 Residual drift reduction 47
5.5.3 Base shear reduction 48
Chapter VI: Design Steps and Recommendations 50
Chapter VII: Conclusions 52
References 54
Tables 59
Figures 71

參考文獻 [1] E. Mele, “Moment resisting welded connections: An extensive review of design practice and experimental research in USA, Japan and Europe,” J. Earthq. Eng., vol. 6, no. 1, pp. 111–145, 2002.
[2] M. E. Lemonis, “Steel moment resisting frames with both joint and beam dissipation zones,” J. Constr. Steel Res., vol. 147, pp. 224–235, 2018.
[3] C. G. Lachanas and D. Vamvatsikos, “Model type effects on the estimated seismic response of a 20-story steel moment resisting frame,” J. Struct. Eng., vol. 147, no. 6, pp. 1–17, 2021.
[4] B. Asgarian, A. Sadrinezhad, and P. Alanjari, “Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis,” J. Constr. Steel Res., vol. 66, no. 2, pp. 178–190, 2010.
[5] L. Martinelli, M. G. Mulas, and F. Perotti, “The seismic behaviour of steel moment-resisting frames with stiffening braces,” Eng. Struct., vol. 20, no. 12, pp. 1045–1062, 1998.
[6] P. Hsiao, D. E. Lehman, and C. W. Roeder, “Improved analytical model for special concentrically braced frames,” J. Constr. Steel Res., vol. 73, pp. 80–94, 2012.
[7] S. Costanzo, M. D’Aniello, and R. Landolfo, “Seismic design criteria for Chevron CBFs: European vs North American codes (Part-1),” J. Constr. Steel Res., vol. 135, pp. 83–96, Aug. 2017.
[8] R. Wen, O. Seker, B. Akbas, and J. Shen, “Designs of special concentrically braced frame using AISC 341-05 and AISC 341-10,” Pract. Period. Struct. Des. Constr., vol. 21, no. 1, pp. 1–9, 2016.
[9] J. Shen, O. Seker, B. Akbas, P. Seker, S. Momenzadeh, and M. Faytarouni, “Seismic performance of concentrically braced frames with and without brace buckling,” Eng. Struct., vol. 141, pp. 461–481, 2017.
[10] B. V Fell, A. M. Kanvinde, G. G. Deierlein, and A. T. Myers, “Experimental investigation of inelastic cyclic buckling and fracture of steel braces,” J. Struct. Eng., vol. 135, no. 1, pp. 19–32, 2009.
[11] J. Lai and S. A. Mahin, “Steel concentrically braced frames using tubular structural sections as bracing members : design, full-scale testing and numerical simulation,” Int. J. Steel Struct., vol. 14, no. 1, pp. 43–58, 2014.
[12] K. Lee and M. Bruneau, “Energy dissipation of compression members in concentrically braced frames: review of experimental data,” J. Struct. Eng., vol. 131, no. 4, pp. 552–559, 2005.
[13] A. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi, G. Muhammad, and U. Hanif, “State‑of‑the‑art review of metallic dampers: testing, development and implementation,” Arch. Comput. Methods Eng., vol. 27, no. 0123456789, pp. 455–478, 2019.
[14] R. Aghlara and M. Tahir, “A passive metallic damper with replaceable steel bar components for earthquake protection of structures,” Eng. Struct., vol. 159, no. December 2017, pp. 185–197, 2018.
[15] M. Jarrah, H. Khezrzadeh, M. Mofid, and K. Jafari, “Experimental and numerical evaluation of piston metallic damper (PMD),” J. Constr. Steel Res., vol. 154, pp. 99–109, 2019.
[16] L. A. Fahnestock, J. M. Ricles, and R. Sause, “Experimental evaluation of a large-scale buckling-restrained braced frame,” J. Struct. Eng., vol. 133, no. 9, pp. 1205–1214, 2007.
[17] H. L. Hsu and H. Halim, “Improving seismic performance of framed structures with steel curved dampers,” Eng. Struct., vol. 130, pp. 99–111, 2017.
[18] B. Sitler, T. Takeuchi, R. Matsui, M. Terashima, and Y. Terazawa, “Experimental investigation of a multistage buckling-restrained brace,” Eng. Struct., vol. 213, no. May, p. 110482, 2020.
[19] D. R. Sahoo, T. Singhal, S. S. Taraithia, and A. Saini, “Cyclic behavior of shear-and-flexural yielding metallic dampers,” J. Constr. Steel Res., vol. 114, pp. 247–257, 2015.
[20] R. Aghlara, M. M. Tahir, and A. Bin Adnan, “Experimental study of pipe-fuse damper for passive energy dissipation in structures,” J. Constr. Steel Res., vol. 148, pp. 351–360, 2018.
[21] I. P. E. Sarassantika and H. L. Hsu, “Improving brace member seismic performance with amplified-deformation lever-armed dampers,” J. Constr. Steel Res., vol. 192, no. August 2021, p. 107221, 2022.
[22] I. P. E. Sarassantika and H. L. Hsu, “Upgrading framed structure seismic performance using steel Lever-Armed dampers in the Braces,” Eng. Struct., vol. 280, no. January, p. 115683, 2023.
[23] FEMA, Prestandard and commentary for the seismic rehabilitation of building, no. November. Washington, D.C., 2000.
[24] P.-C. Hsiao and W.-C. Liao, “Effects of Hysteretic Properties of Stud-Type Dampers on Seismic Performance of Steel Moment-Resisting Frame Buildings,” J. Struct. Eng., vol. 145, no. 7, p. 04019065, 2019.
[25] T. Wu et al., “Seismic Collapse Response of Steel Moment Frames with Deep Columns,” vol. 144, no. 9, pp. 1–12, 2018.
[26] D. Özhendekci and N. Özhendekci, “Seismic performance of steel special moment resisting frames with different span arrangements,” J. Constr. Steel Res., vol. 72, pp. 51–60, 2012.
[27] L. Macedo and J. M. Castro, “Earthquake loss assessment of steel moment-resisting frames designed according to Eurocode 8,” Soil Dyn. Earthq. Eng., vol. 124, no. April 2018, pp. 58–71, 2019.
[28] J. W. Baker, “Significance of residual drifts in building earthquake loss estimation,” Earthq. Eng. Struct. Dyn., vol. 41, no. 11, pp. 1477–1493, 2012.
[29] S. H. Hwang and D. G. Lignos, “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in highly seismic regions,” Earthq. Eng. Struct. Dyn., vol. 46, no. 13, pp. 2141–2162, 2017.
[30] V. Mohsenazdeh and L. Wiebe, “Experimental Investigation of a Concentrically Braced Frame with Replaceable Brace Modules,” J. Struct. Eng., vol. 146, no. 11, 2020.
[31] D. Stevens and L. Wiebe, “Experimental Testing of a Replaceable Brace Module for Seismically Designed Concentrically Braced Steel Frames,” J. Struct. Eng., vol. 145, no. 4, 2019.
[32] A. Kanyilmaz, “Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study,” J. Constr. Steel Res., vol. 133, pp. 1–18, 2017.
[33] P. Hsiao et al., “Seismic Vulnerability of Older Braced Frames,” vol. 1, no. February, pp. 108–120, 2014.
[34] S. Costanzo, M. D’Aniello, and R. Landolfo, “Proposal of design rules for ductile X-CBFS in the framework of EUROCODE 8,” Earthq. Eng. Struct. Dyn., vol. 48, no. 1, pp. 124–151, 2019.
[35] L.-H. Xu, X.-W. ; Fan, and Z.-X. Li, “Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs,” Earthq. Eng. Struct. Dyn., no. 056, pp. 1–6, 2016.
[36] X. Xie, L. Xu, and Z. Li, “Hysteretic model and experimental validation of a variable damping self-centering brace,” J. Constr. Steel Res., vol. 167, p. 105965, 2020.
[37] T. Takeuchi, R. Matsui, and B. Sitler, “State-of-art stability assessment of buckling-restrained braces including connections,” 16th World Conf. Earthq., no. March, 2017.
[38] B. Sitler, G. Macrae, T. Takeuchi, R. Matsui, B. Westeneng, and A. Jones, “Buckling restrained brace connection and stability performance issues,” 16th World Conf. Earthq. Eng., no. March, pp. 1–12, 2017.
[39] A. Benavent-Climent, “A brace-type seismic damper based on yielding the walls of hollow structural sections,” Eng. Struct., vol. 32, no. 4, pp. 1113–1122, 2010.
[40] R. Tremblay, P. Bolduc, R. Neville, and R. DeVall, “Seismic testing and performance of buckling-restrained bracing systems,” Can. J. Civ. Eng., 2006.
[41] P. Hsiao, K. Hayashi, H. Inamasu, and Y. Luo, “Development and Testing of Naturally Buckling Steel Braces,” J. Struct. Eng., vol. 142, no. 1, 2015.
[42] G. S. Prinz and P. W. Richards, “Seismic Performance of Buckling-Restrained Braced Frames with Eccentric Configurations,” J. Struct. Eng., vol. 1, no. MARCH, p. 04016141, 2012.
[43] J. W. Berman and M. Bruneau, “Cyclic Testing of a Buckling Restrained Braced Frame with Unconstrained Gusset Connections,” J. Struct. Eng., vol. 135, no. 12, pp. 1499–1510, 2009.
[44] C. Ariyaratana and L. A. Fahnestock, “Evaluation of buckling-restrained braced frame seismic performance considering reserve strength,” Eng. Struct., vol. 33, no. 1, pp. 77–89, 2011.
[45] N. Surendran and A. V. P, “Buckling Restrained Braces ( BRB ) – A Review,” Int. J. Eng. Technol., vol. 4, no. 3, pp. 2320–2324, 2017.
[46] H. L. Hsu and H. Halim, “Brace performance with steel curved dampers and amplified deformation mechanisms,” Eng. Struct., vol. 175, pp. 628–644, 2018.
[47] Y. J. Kim, T. S. Ahn, J. H. Bae, and S. H. Oh, “Experimental study of using cantilever type steel plates for passive energy dissipation,” Int. J. Steel Struct., vol. 16, no. 3, pp. 959–974, 2016.
[48] S. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Numerical and Experimental Study of Comb-Teeth Metallic Yielding Dampers,” vol. 16, no. 1, pp. 177–196, 2016.
[49] R. C. Hibbeler, Statics and mechanics of materials. 2013.
[50] R.C. Hibbeler, Structural Analysis, 8th ed. Prentice Hall, 2012.
[51] ASTM, “Standard test methods for tension testing of metallic materials,” 2013.
[52] FEMA 461, “Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components,” Redwood City, California, 2007.
[53] K. Ke and M. C. H. Yam, “Energy-factor-based damage-control evaluation of steel MRF systems with fuses,” Steel Compos. Struct., vol. 22, no. 3, pp. 589–611, 2016.
[54] ANSYS, “ANSYS Theory Reference.” ANSYS Inc., 1999.
[55] N. Hoveidae and B. Rafezy, “Local buckling behavior of core plate in all-steel buckling restrained braces,” Int. J. Steel Struct., vol. 15, no. 2, pp. 249–260, Jun. 2015.
[56] W. H. Yang, “A Generalized ton Uses Criterion for Yield and Fracture,” J. Appl. Mech., vol. 47, no. 6, pp. 297–300, 1980.
[57] “ANSI/AISC 341-16: Seismic Provisions for Structural Steel Buildings,” 130 East Randolph Street, Suite 2000, Chicago, Illinois 60601, 2016.
[58] C.-K. Wang, Statically indeterminate structures. McGraw-Hill, 1953.
[59] American Institute of Steel Construction, “Seismic Provisions for Structural Steel Buildings,” Seism. Provisions Struct. Steel Build., no. 1, p. 402, 2010.
[60] H. E. Shabana, S. A. B. Ibrahim, and A. K. Dessouki, “Strength and stability requirements of lateral bracing for compression flange in I-shaped beams,” Int. J. Struct. Eng., vol. 2, no. 3, pp. 273–302, 2011.
[61] ASTM, “Standard Test Methods for Cyclic ( Reversed ) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for,” 2019.
[62] A. Occhiuzzi, “Additional viscous dampers for civil structures: Analysis of design methods based on effective evaluation of modal damping ratios,” Eng. Struct., vol. 31, no. 5, pp. 1093–1101, 2009.
[63] G. M. Del Gobbo, A. Blakeborough, and M. S. Williams, “Improving total-building seismic performance using linear fluid viscous dampers,” Bull. Earthq. Eng., vol. 16, no. 9, pp. 4249–4272, 2018.
[64] ASCE/SEI 7–16, Minimum design loads for buildings and other structures. Reston, Virginia 20191: American Society of Civil Engineers, 2000.
[65] Computer and Structures.Inc (CSI), “ETABS.” Computer and Structures, Inc (CSI), 2013.
[66] J. F. Chai, T. J. Teng, and K. C. Tsai, “Development of seismic force requirements for buildings in Taiwan,” Earthq. Eng. Eng. Vib., vol. 8, no. 3, pp. 349–358, 2009.
[67] CESMD, “Center for Engineering Strong Motion Data,” 2017. [Online]. Available: http://strongmotioncenter.org/.
[68] Y. Zhou, X. Lu, D. Weng, and R. Zhang, “A practical design method for reinforced concrete structures with viscous dampers,” Eng. Struct., vol. 39, pp. 187–198, 2012.
[69] M. R. Tabeshpour and H. Ebrahimian, “Seismic retrofit of existing structures using friction dampers,” Asian J. Civ. Eng., vol. 11, no. 4, pp. 509–520, 2010.
[70] Y. K. Wen, “Method for random vibration of hysteretic systems,” J. Eng. Mech. Div., vol. 2, no. 102, pp. 249–263, 1976.
[71] FEMA, Seismic performance assessment of buildings, volume 1 - methodology, 2nd ed., no. December 2018. Washington, D.C., 2018.
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2023-3-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明