博碩士論文 106383011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.12.120.25
姓名 黃朝鈿(Chou-Dian Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 真空硬銲鈦合金之製程參數最佳化及疲勞裂縫成長評估模式研究
(Study on Optimization of Process Parameters and Fatigue Crack Growth Assessment Models in a Vacuum Brazed Titanium Alloy)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Ti-6Al-4V為母材,TiCuNi為填料(30 µm厚度金屬箔片),進行真空硬銲後之結構為對象。第一部分的目的為建立最佳製程參數組合,品質參數採用抗拉強度、破壞韌性及微硬度,分別以單目標及多目標最佳化方法進行分析。第二部分的目的為建立疲勞裂縫成長速率資料,探討平均應力及超載負荷之影響,透過等負荷振幅疲勞實驗,得到材料疲勞常數及應力比之影響。利用變動負荷振幅疲勞實驗結果,驗證多種疲勞裂縫成長模式,包括應力比效應、負荷交互效應及裂縫閉合效應等,以建立最佳的疲勞裂縫成長預測模式。
研究結果顯示:以抗拉強度為目標的最佳化參數組合為預熱溫度890℃,預熱時間60分鐘,硬銲溫度975℃,硬銲時間45分鐘。驗證實驗中可以得到抗拉強度1265 MPa與預測值1262 MPa之誤差僅0.24 %。選用抗拉強度、破壞韌性和微硬度作為品質目標,最佳化參數組合為預熱溫度890℃,預熱時間60分鐘;硬銲溫度1005℃,硬銲時間15分鐘。超載負荷比大於2.0時,會造成明顯的疲勞裂縫成長延遲效應。在銲道破斷面觀察方面,在拉伸試片中,抗拉強度較小者,破斷面以小劈裂面為主,抗拉強度較大者,破斷面由韌窩組織及小劈裂面所組成,且強度越高則韌窩組織越多且越緻密。超載負荷會造成裂縫成長速率大幅度的改變,可在破斷面上看出其施加的位置及當時的裂縫前緣。施加的超載負荷越大,該圓弧形的裂縫前緣曲線越明顯。在疲勞裂縫成長模式方面,(1)雨流循環計數法比簡單範圍法佳,(2) 在裂縫閉合效應修正模式中:與Elber模式的預測結果與未修正的Paris模式相近,且接近實驗值,而Schijve模式的預測壽命值則過度小,(3)最接近實驗值的疲勞裂縫成長預測模式為靜態破壞模式,(4) 利用塑性變形區修正的Willenborg模式,其修正結果比未修正者差。次序效應驗證中,對於應力振幅由大到小排列的歷程,在初期產生較大的拉應力,對材料產生超載負荷效應,由此產生的殘留壓應力場,導致後續負荷的有效應力降低,進而降低裂縫擴展速率,增加疲勞壽命。
摘要(英) This study focuses on the structure after vacuum brazing using Ti-6Al-4V as the base material and TiCuNi as the filler material (metal foils with a thickness of 30 µm). The first part aims to establish the optimal combination of process parameters. Quality parameters, including tensile strength, fracture toughness, and microhardness, are analyzed using both single-objective and multi-objective optimization methods. The second part aims to establish fatigue crack growth rate data, investigating the influence of average stress and overload conditions. Through fatigue experiments under constant load amplitudes, the study obtains data on material fatigue constants and the effect of stress ratio. Utilizing the results from variable load amplitude fatigue experiments, various fatigue crack growth models are validated, including stress ratio effects, load interaction effects, and crack closure effects, to establish the optimal fatigue crack growth prediction model.
The research results indicate that the optimal parameter combination, targeting tensile strength, consists of a preheating temperature of 890°C, a preheating time of 60 minutes, a brazing temperature of 975°C, and a holding time of 45 minutes. Experimental validation yields a tensile strength of 1265 MPa, with a deviation of only 0.24% from the predicted value of 1262 MPa. When utilizing tensile strength, fracture toughness, and microhardness as quality objectives, the optimized parameter combination includes a preheating temperature of 890°C, a preheating time of 60 minutes; a brazing temperature of 1005°C, and a holding time of 15 minutes. Notably, when the overload load ratio exceeds 2.0, a significant fatigue crack growth delay effect is observed. With respect to the fracture surface observation of welded joints, those with lower tensile strength exhibit a fracture surface predominantly characterized by small cleavage facets. On the contrary, specimens with higher tensile strength display a fracture surface composed of ductile dimples and small cleavage facets, with increased density and compactness of the ductile dimples corresponding to higher strength levels. The application of overload stress induces a significant decrease in the crack propagation rate, revealing the applied stress location and the crack front at the time of fracture on the fracture surface. As the applied overload stress increases, the arcuate curve of the crack front becomes more pronounced on the fracture surface. In terms of fatigue crack growth models: (1) The rainflow cycle counting method is superior to the simple range method. (2) In the crack closure effect correction model: The predicted results of the Elber model are similar to the uncorrected Paris model and close to experimental values, while the Schijve model′s predicted life values are excessively small. (3) The fatigue crack growth prediction model closest to experimental values is the static failure mode. (4) The Willenborg model corrected with the plastic deformation zone yields worse results than the uncorrected model. In the verification of sequence effects, the High-to-Low (HtoL) transition, occurred in the early stages, induces significant tensile stresses, leading to an overload effect on the material. The residual stress field generated as a result of overloading diminishes the effective stress for subsequent loading, consequently reducing the crack propagation rate and enhancing the fatigue life.
關鍵字(中) ★ 真空硬銲
★ 鈦合金
★ 田口法
★ 製程最佳化
★ 變動應力振幅負荷
★ 疲勞裂縫成長壽命評估
★ 次序效應
關鍵字(英)
論文目次 摘要 i
Abstract iv
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xiv
符號說明 xv
第一章 緒論 1
1-1 研究背景與重要性 1
1-1-1 鈦合金真空硬銲 1
1-1-2 真空硬銲之製程參數最佳化 3
1-1-3 疲勞裂縫成長評估模式 4
1-2 研究目的 5
第二章 文獻回顧 8
2-1 真空硬銲及其製程最佳化之研究 8
2-2 鈦合金銲接結構之疲勞性質及疲勞壽命評估之研究 8
2-2-1 影響銲接結構疲勞壽命之因素 9
2-2-2 銲接結構疲勞設計方法 9
2-2-3 鈦合金銲接件疲勞性質之研究 9
2-2-4變動振幅負荷歷程下之疲勞行為研究 11
2-2-5 鈦合金銲接件破壞韌性之研究 11
2-2-6 超載負荷效應之研究 12
2-2-7 次序效應之研究 12
第三章 研究方法 14
3-1 實驗設計及真空硬銲製程最佳化分析法 14
3-1-1 田口方法 14
3-1-2 製程最佳化結果之驗證 16
3-1-3 主成份分析 17
3-2 鈦合金銲接件之製作及金相分析 17
3-2-1 鈦合金材料及銲接方法 17
3-2-2 金相觀察及分析 18
3-3 拉伸試驗方法 19
3-4 微硬度量測方法 19
3-5 破壞韌性(JIC)之測試方法 20
3-6 疲勞裂縫成長速率之測試方法 22
3-6-1 等振幅疲勞試驗方法 22
3-6-2 變動振幅疲勞試驗方法 24
3-6-3 超載負荷試驗方法 25
3-7 疲勞裂縫成長分析 26
3-7-1 疲勞裂縫成長速率方程式 27
3-7-2 疲勞裂縫成長壽命分析 28
3-8 破斷面分析 34
第四章 結果與討論 35
4-1 金相組織 35
4-2 真空硬銲製程參數最佳化 36
4-2-1以抗拉強度為目標 37
4-2-2以破壞韌性為目標 40
4-2-3以微硬度為目標 42
4-2-4多目標最佳化分析 45
4-3等振幅疲勞裂縫成長速率 48
4-4變動負荷振幅下之疲勞裂縫成長 51
4-5 超載負荷之影響 53
4-5-1 超載負荷後之疲勞裂縫成長曲線 53
4-5-2 超載負荷產生之塑性區尺寸 54
4-5-3 超載負荷對疲勞裂縫成長速率之影響 57
4-6 破斷面分析 61
4-6-1 巨觀顯微鏡觀察 61
4-6-2 電子顯微鏡觀察 63
4-7疲勞裂縫成長分析 68
4-7-1 TRN歷程 70
4-7-2 BRK歷程 73
4-7-3 SUS歷程 76
4-7-4 HtoL 及LtoH歷程 79
第五章 結論 81
第六章 未來研究方向 83
參考文獻 84
參考文獻 [1] 陳靖惠:〈鈦金屬於海洋工程應用趨勢〉,2017年6月7日,取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=112。
[2] 洪胤庭:〈純鈦及鈦合金特性及製程介紹〉,《中工高雄會刊》,第21卷,第1期,2013。
[3] M. J. Donachie, Titanium: a technical guide, Second Edition, Ohio, USA: ASM International, pp. 5-10, 2000.
[4] X. Huang and N. L. Richards, “Activated diffusion brazing technology for manufacture of titanium honeycomb structures - A statistical study,” Welding Research, No. 3, pp. 73-81, 2004.
[5] J. R. Woodward, “Titanium honeycomb sandwich fabrication process,” Proceedings of Fifth National SAMPLE Technical Conference. New York, pp. 432-437, 1973.
[6] 張士行:〈製程最佳化七大手法〉,《中研院植物所演講手稿》,1999。
[7] 褚晴暉:〈科學發展〉,2012年5月8日,取自https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=d4c7a8d7-822a-4e82-b48a-366380cf2b9e.
[8] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[9] Eurocode 3: Design of steel structures Part 1-9: Fatigue, British Standards Institution, London, 2005.
[10] Eurocode 9: Design of aluminium structures Part 2: Structures susceptible to fatigue, British Standards Institution, London, 1999.
[11] A Hobbacher, Fatigue design of welded joints and components. Cambridge, England: Abington Publishing, 1996.
[12] AWS D1.9/D1.9M:2015. Structural welding code - Titanium, 2015.
[13] 黃俊仁,〈鈦合金銲接件之疲勞性質及壽命評估模式研究〉,科技部,計畫編號:MOST-105-2221-E-008-046,2016。
[14] R. G. Forman, V. E. Kearney, and R. M. Engle, “Numerical analysis of crack propagation in cyclic-loaded structures,” Journal of Basic Engineering, Vol. 89, No. 3, pp. 459-464, 1967.
[15] O. E. Wheeler, “Spectrum loadings and crack growth,” Journal of Basic Engineering, Vol. 94, No. 1, pp. 181-186, 1972.
[16] J. Willenborg, R. M. Engle, and H. A. Wood, “A crack growth retardation model using an effective stress concept,” Air Force Flight Dynastics Lab, Jan. 1971.
[17] W. Elber, “Fatigue crack propagation,” Ph.D. Thesis, University of New South Wales, Australia, 1968.
[18] J. B. Chang, and C. M. Hudson, Method and Model for Predicting Fatigue Crack Growth under Random Loading. Baltimore, USA, pp. 53-84, 1981.
[19] I. M. Austen, and E. F. Walker, “Corrosion fatigue crack growth rate information for offshore life prediction,” Steel in Marine Structure, Vol 87, pp. 859-870, 1987.
[20] 薛人愷,〈高強度鈦合金硬銲之研究〉,行政院國家科學委員會報告,計畫編號:NSC95-2221-E002-057,2007。
[21] 薛人愷,〈高性能雙相鈦合金硬銲之研究〉,行政院國家科學委員會報告,計畫編號:NSC96-2221-E002-152,2008。
[22] 李振中:〈銀基填料(Ag-Cu-Ti)與Ti-6Al-4V之真空硬銲接合研究〉,碩士論文,元智大學,2009。
[23] 李義剛,林亮東,林俊舜,鐘清旗:〈採用鋁基填料之鈦合金Ti-6Al-4V真空及氣氛硬銲研究〉,《中國材料科學學會2013年會》,中華民國, 2013年10月。
[24] 李國勳,李義剛,楊智綱,馮立霆,吳一君,儲德鋒:〈Ti-15Cu-15Ni填料在Ti-6Al-4V冷卻盤真空硬銲最佳化條件之探討〉,《中華民國銲接協會93年年會》,中華民國,2004年10月。
[25] H. Lin, J. R. Hwang, and C. P. Fung, “Optimization of vacuum brazing process parameters in AA6061 using Taguchi method,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 10, No. 2, Paper No. 15-00458, pp. 1-10, 2016.
[26] R. Ren, F. Guo, Y. Y. Cui, and Z. D. Xia, “Study on the microstructure and mechanical properties of vacuum brazing titanium alloy using Ti-Zr-Cu-Ni amorphous filler metal,” Cailiao Kexue yu Gongyi/Material Science and Technology, Vol. 17, pp. 56-59, 2009.
[27] Y. Y. Cui, Z. D. Xia, F. Guo, and R. Ren, “Vacuum brazing BT20 titanium alloy with Ti-20Zr-15Ni-15Cu filler,” Cailiao Kexue yu Gongyi/Material Science and Technology, Vol. 17, pp. 48-51, 2009.
[28] O. Botstein, and A. Rabinkin, “Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti-25Zr-50Cu brazing filler metal,” Materials Science and Engineering A, Vol. 188, No. 1-2, pp. 305-315, 1994.
[29] V. Grubišic Vatroslav, “Service strength of welded aluminium structures influences and validation,” Welding in the World, Vol. 51, Special Issue, pp. 1-16, 2007.
[30] C. D. M. Liljedahl, O. Zanellato, M. E. Fitzpatrick, J. Lin, and L. Edwards, “The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading,” International Journal of Fatigue, Vol. 32, No. 4, pp. 735-743, 2010.
[31] C. M. Sonsino, “Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry,” International Journal of Fatigue, Vol. 31, No. 1, pp. 88-101, 2009.
[32] BS PD 6493, “Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures,” London: British Standards Institution, 1991.
[33] J. P. Bergmann, and S. Herold, “Influence of processing conditions on the mechanical properties of aluminium overlap joints: A case study,” Welding in the World, Vol. 50, No. 11-12, pp. 55-64, 2006.
[34] International Institute of Welding, “Fatigue design of welded joints and components,” Abington, Cambridge: Abington Publishing, 1996.
[35] AWS D1.1/D1.1M:2015. Structural welding code - Steel, 2015.
[36] AWS D1.2/D1.2M:2014. Structural welding code - Aluminum, 2014.
[37] E. Niemi, Stress determination for fatigue analysis of welded components, Cambridge: International Institute of Welding, Abington Publishing, 1995.
[38] 魏明德:〈鈦合金銲件之低週次疲勞性質及其機制〉,碩士論文,台灣海洋大學材料工程所,2002。
[39] X. G. Yang, S. L. Li, and H.Y. Qi, “Ti-6Al-4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior,” Materials Science and Engineering A, Vol. 597, pp. 225-231, 2014.
[40] T. S. Balasubramanian, V. Balasubramanian, and M. A. Muthumanikkam, “Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[41] E. V. Abolikhina, S. L. Antonyuk, A. G. Molyar, and V. N. Zamkov, “Fatigue fracture of welded specimens made of T110 alloy,” Materials Science, Vol. 40, pp. 535-353, 2004.
[42] E. Lugscheider, and U. Broich, “Mechanical properties of high-temperature brazed titanium materials” Welding Journal, Vol. 74, No. 5, pp. 169-176, 1995.
[43] 丁逸勳:〈Ti-6Al-4V、SP700銲件機械性質特性〉,碩士論文,台灣海洋大學材料工程所,2006。
[44] 丁逸勳:〈環境效應對雙相 α + β 鈦合金雷射銲件之疲勞裂縫成長行為〉,博士論文,台灣海洋大學材料工程所,2011。
[45] 張世宗:〈Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為〉,碩士論文,台灣海洋大學材料工程所,2012。
[46] H. Y. Qi, H. Shi, S. L. Li, and X. G. Yang, “Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, Vol 33, pp. 516-521, 2013.
[47] L. B. Ji, S. B. Hu, X. Z. Li, J. Y. Chen, and J. Z. Xiao, “Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Chinese Journal of Nonferrous Metals, No. 1, pp. 102-109, 2011.
[48] R. Cortez, S. Mall, and J. R. Calcaterra, “Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6Al-4V,” International Journal of Fatigue, Vol. 21, No. 7, pp. 709-717, 1999.
[49] O. Jin, H. Lee, and S. Mall, “Investigation into cumulative damage rules to predict fretting fatigue life of Ti-6Al-4V under two-level block loading condition,” Journal of Engineering Materials and Technology, Vol. 125, No. 3, pp. 315-323, 2003.
[50] A. Sugeta, Y. Uematsu, Y. Kitayama, and M. Jono, “Fatigue crack growth behavior of Ti-6Al-4V alloy with bimodal microstructure under constant and non-stationary variable amplitude load sequence,” Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 71, No. 8, pp. 1160-1166, 2005.
[51] K. P. Rao, K. Angamuthu, P. B. Srinivasan, “Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[52] K. K. Murthy, and S. Sundaresan, “Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment,” Welding Journal, Vol. 76, No. 2, pp. 81-91, 1997.
[53] J.L. Barreda, X. Azpiroz, and A.M. Irisarri, “Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[54] L. P. Borrego, J. M. Ferreira, J. M. Pinho da Cruz, and J. M. Costa, “Evaluation of overload effects on fatigue crack growth and closure,” Engineering Fracture Mechanics, Vol. 70, pp. 1379-1397, 2003.
[55] A. Steuwer et al., “The evolution of crack-tip stresses during a fatigue overload event,” Acta Materialia, Vol. 58, pp. 4039-4052, 2010.
[56] C. Robin, M. Louah, and G. Pluvinage, “Influence of an overload on the fatigue crack growth in steels,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 6, pp. 1-13, 1983.
[57] K. Sadananda, A. K. Vasudevan, R. L. Holtz, and E. U. Lee, “Analysis of overload effects and related phenomena,” International Journal of Fatigue, Vol. 21, Suppl. 1, Sept., pp. 233-246, 1999.
[58] W. Zhang et al., “The effect of grain size on the fatigue overload behaviour of nickel,” Materials & Design, Vol. 189, Article No. 108526, 2020.
[59] J. Schijve, “Four lectures on fatigue crack growth,” Delft University of Technology, Department of Aerospace Engineering, Report LR-254, 1977.
[60] 李輝煌:〈田口方法:品質設計的原理與實務〉,高立圖書有限公司,2008。
[61] 蘇朝墩:〈品質工程:線外方法與應用〉,前程文化,2013年9月。
[62] K. Pearson, “On lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2, pp. 559-572, 1901.
[63] H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, Vol. 24, pp. 417-441, 498-520, 1933.
[64] C. H. Huang, C. P. Fung, S. H. Chang, J. R. Hwang, and J. L. Doong, “Optimization study in manufacturing process for PC/ABS blends,” Chinese Journal of Mechanical Engineering, Vol. 16, No. 3, pp. 233-236, 2003.
[65] D. Socie, “Variable amplitude fatigue life estimation models,” SAE Transactions, Vol. 91, pp. 2351-2369, 1982.
[66] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, Metal Fatigue in Engineering, 2nd Edition; New York, USA: Wiley-Interscience, 2001; pp. 288–289.
[67] S. Jiang, W. Zhang, X. Li, and F. Sun, “An analytical model for fatigue crack propagation prediction with overload effect,” Mathematical Problems in Engineering, Vol. 2014, 2014.
[68] J. A. Bannantine, J. J. Comer, and J. L. Handerck, Fundamentals of metal fatigue analysis, Englewood Cliffts: Prentice Hall, 1990.
[69] Fatigue Crack Growth. Available online: https://mechanicalc.com/reference/fatigue-crack-growth (accessed on 21 December 2023).
[70] J. A. Bannantine, D. F. Socie, “A Multiaxial Fatigue Life Estimation,” ASTM International, 1122, 249, 1992.
[71] J. Schijve, Fatigue of structures and materials, Dordrecht, The Netherlands: Springer, pp. 209–256, 2009.
[72] ASM Handbook, “Fatigue and fracture,” Volume 19, Fatigue and Fracture. ASM International, 153, 76, 1998.
[73] M. Matsuishi, and T. Endo, “Fatigue of metals subjected to varying stress,” Japan Society of Mechanical Engineers, Vol. 68, No. 2, pp. 37-40, 1968.
[74] M. Janssen, J. Zuidema, and R.J.H. Wanhill, Fracture mechanics, New York, USA: Spon Press, 2002.
[75] S.M. Beden, S. Abdullah, A. K. Ariffin, and N. A. Al-Asady, “Fatigue crack growth simulation of aluminum alloy under spectrum loadings,” Materials & Design, Vol. 31, pp. 3449-3456, 2010.
指導教授 黃俊仁 審核日期 2024-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明