參考文獻 |
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization. ArXiv:1607.06450 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1607.06450
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135–146. https://doi.org/10.1162/tacl_a_00051
Bonaccorso, G., Fandango, A., & Shanmugamani, R. (2018). Python advanced guide to artificial intelligence: Expert machine learning systems and intelligent agents using Python.
Botha, J., & Blunsom, P. (2014). Compositional morphology for word representations and language modelling. International Conference on Machine Learning, 1899–1907.
Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R. S., … Kurzweil, R. (2018). Universal Sentence Encoder. ArXiv:1803.11175 [Cs]. Retrieved from http://arxiv.org/abs/1803.11175
Chen, X., Xu, L., Liu, Z., Sun, M., & Luan, H. (2015). Joint Learning of Character and Word Embeddings. Twenty-Fourth International Joint Conference on Artificial Intelligence, 1236–1242. IJCAI.
Collobert, R., & Weston, J. (2008). A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. Proceedings of the 25th International Conference on Machine Learning. ACM, 8.
Conneau, A., & Kiela, D. (2018). SentEval: An Evaluation Toolkit for Universal Sentence Representations. ArXiv:1803.05449 [Cs]. Retrieved from http://arxiv.org/abs/1803.05449
Conneau, A., Lample, G., Rinott, R., Williams, A., Bowman, S. R., Schwenk, H., & Stoyanov, V. (2018). XNLI: Evaluating Cross-lingual Sentence Representations. ArXiv:1809.05053 [Cs]. Retrieved from http://arxiv.org/abs/1809.05053
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. Retrieved from http://arxiv.org/abs/1810.04805
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification. ArXiv:1801.06146 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1801.06146
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181
Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R., & Fidler, S. (2015). Skip-Thought Vectors. ArXiv:1506.06726 [Cs]. Retrieved from http://arxiv.org/abs/1506.06726
LeCun, Y. (1989). Generalization and network design strategies. In Connectionism in perspective (Vol. 19). Citeseer.
Li, Y., Li, W., Sun, F., & Li, S. (2015). Component-Enhanced Chinese Character Embeddings. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 829–834. https://doi.org/10.18653/v1/D15-1098
Liu, X., Chen, Q., Deng, C., Zeng, H., Chen, J., Li, D., & Tang, B. (2018). LCQMC:A Large-scale Chinese Question Matching Corpus. Proceedings of the 27th International Conference on Computational Linguistics, 1952–1962. Retrieved from http://www.aclweb.org/anthology/C18-1166
Luong, T., Socher, R., & Manning, C. (2013). Better word representations with recursive neural networks for morphology. Proceedings of the Seventeenth Conference on Computational Natural Language Learning, 104–113.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv Preprint ArXiv:1301.3781.
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. Retrieved from http://www.aclweb.org/anthology/D14-1162
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. ArXiv:1802.05365 [Cs]. Retrieved from http://arxiv.org/abs/1802.05365
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. 12.
Rücklé, A., Eger, S., Peyrard, M., & Gurevych, I. (2018). Concatenated Power Mean Word Embeddings as Universal Cross-Lingual Sentence Representations. ArXiv:1803.01400 [Cs]. Retrieved from http://arxiv.org/abs/1803.01400
Shaosheng Cao, J. Z., Wei Lu, & Li, X. (2018). cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information.
Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway Networks. ArXiv:1505.00387 [Cs]. Retrieved from http://arxiv.org/abs/1505.00387
Su, T., & Lee, H. (2017). Learning Chinese Word Representations From Glyphs Of Characters. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 264–273. https://doi.org/10.18653/v1/D17-1025
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 5998–6008). Retrieved from http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
Williams, A., Nangia, N., & Bowman, S. (2018). A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 1112–1122. https://doi.org/10.18653/v1/N18-1101
Wu, W., Meng, Y., Han, Q., Li, M., Li, X., Mei, J., … Li, J. (2019). Glyce: Glyph-vectors for Chinese Character Representations. ArXiv:1901.10125 [Cs]. Retrieved from http://arxiv.org/abs/1901.10125
Yin, R., Wang, Q., Li, P., Li, R., & Wang, B. (2016). Multi-Granularity Chinese Word Embedding. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 981–986. Retrieved from https://aclweb.org/anthology/D16-1100
Yu, J., Jian, X., Xin, H., & Song, Y. (2017). Joint Embeddings of Chinese Words, Characters, and Fine-grained Subcharacter Components. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 286–291. Retrieved from https://www.aclweb.org/anthology/D17-1027
Yu, S., Kulkarni, N., Lee, H., & Kim, J. (2017). Syllable-level neural language model for agglutinative language. ArXiv Preprint ArXiv:1708.05515.
Zhuang, H., Wang, C., Li, C., Li, Y., Wang, Q., & Zhou, X. (2018). Chinese Language Processing Based on Stroke Representation and Multidimensional Representation. IEEE Access, 6, 41928–41941. https://doi.org/10.1109/ACCESS.2018.2860058
|