博碩士論文 106423036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.204.203.142
姓名 陳君櫂(Chun-Chao Chen)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用語意分析資訊於相關回饋以進行文件分類之方法
(The Application of Semantic Analysis Information in Relevance Feedback for Document Classification)
相關論文
★ 信用卡盜刷防治簡訊規則製作之決策支援系統★ 不同檢索策略之效果比較
★ 知識分享過程之影響因子探討★ 兼具分享功能之檢索代理人系統建構與評估
★ 犯罪青少年電腦態度與學習自我效能之研究★ 使用AHP分析法在軟體度量議題之研究
★ 優化入侵規則庫★ 商務資訊擷取效率與品質促進之研究
★ 以分析層級程序法衡量銀行業導入企業應用整合系統(EAI)之關鍵因素★ 應用基因演算法於叢集電腦機房強迫對流裝置佈局最佳近似解之研究
★ The Development of a CASE Tool with Knowledge Management Functions★ 以PAT tree 為基礎發展之快速搜尋索引樹
★ 以複合名詞為基礎之文件概念建立方式★ 利用使用者興趣檔探討形容詞所處位置對評論分類的重要性
★ 透過半結構資訊及使用者回饋資訊以協助使用者過濾網頁文件搜尋結果★ 利用feature-opinion pair建立向量空間模型以進行使用者評論分類之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在資訊檢索領域中,相關回饋演算法是從使用者所回傳的相關文件清單中,萃取重要字詞作為回饋的特徵值,常使用向量空間模型(Vector Space Model)來表示文件之字詞特徵,然而此方法只考慮字詞出現的頻率,而未考量到字詞和文件間存在之語意關係,並且對於原始查詢字詞之語意資訊未加以利用,而近年來語意搜索(Semantic search)的研究陸續被提出,目的是挖掘字詞間隱含的語意關係。因此,本研究發展一套基於語意資訊之文件特徵擷取方法,以主題模型萃取隱含於相關文件與非相關文件中之主題資訊,並擷取出較能代表使用者資訊需求之主題字詞,再使用神經網路模型Word2Vec來分析原始查詢字詞與主題字詞間之語意資訊,也同時考量主題字詞之字詞出現情況(Term-appearance situation),最終給予不同主題字詞適當的權重。實驗結果表明,本研究提出之方法的分類準確率相較於BASELINE提升27個百分點,可以找出具代表性之重要主題字詞,進而檢索出更符合使用者資訊需求之文件。
摘要(英) In the field of information retrieval, the relevant feedback algorithm extracts important words as feedback feature values from the list of related documents returned by the user. The vector space model is often used to represent the word features of the document. However, this method only considering the frequency of occurrence of words, but not considering the semantic relationship between words and document, and the semantic information of the original query words is not used. And the research on semantic search has been proposed in recent years, the purpose is to explore the implicit semantic relationship between words. Therefore, this study develops a document feature extraction method based on semantic information, extracts the topic information implicit in related documents and non-related documents, and extracts the topic words that are more representative of users′ information needs. Then use the neural network model Word2Vec to analyze the semantic information between the original query words and the topic words, and also consider the term-appearance situation of the topic words, and finally give appropriate weights to different topic words.
The experimental results show that the classification precision of our proposed method is 27 percentage points higher than that of BASELINE, and it can find representative and important topic words, and then retrieve the documents that are more in line with the user′s information needs.
關鍵字(中) ★ 資訊檢索
★ 相關回饋
★ LDA
★ Word2Vec
★ 語意分析
關鍵字(英) ★ Information Retrieval
★ Related Feedback
★ LDA
★ Word2Vec
★ Semantic Analysis
論文目次 論文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究範圍與限制 2
1-4 論文架構 3
二、 文獻探討 4
2-1 向量空間模型 4
2-2 相關回饋 5
2-3 主題萃取 7
2-4 字詞敏感度 8
2-5 Word2Vec 9
2-6 應用相關回饋資訊於文件分類之研究 9
2-6-1 應用向量空間模型 10
2-6-2 利用關聯規則與潛在語意分析之特徵擷取方法 11
三、 研究方法 12
3-1 系統架構 12
3-2 方法設計 13
3-2-1 萃取重要主題字詞 14
3-2-2 調整主題字詞權重 14
3-2-3 文件分類器 17
四、 實驗設計 18
4-1 實驗資料 18
4-2 實驗評估指標 21
4-3 實驗參數設定 22
4-4 實驗設計與流程 23
4-4-1 實驗一: 萃取重要主題字詞 23
4-4-2 實驗二: 調整主題字詞權重 29
4-5 實驗結果 33
4-5-1 實驗一結果 33
4-5-2 實驗二結果 33
4-6 實驗結果分析及討論 36
五、 結論 40
5-1 結論和貢獻 40
5-2 未來研究方向 41
參考文獻 42
參考文獻 [1] G. Salton and M. J. McGill, Introduction to modern information retrieval. New York: mcgraw-hill, 1983.
[2] F. Sebastiani, "Text categorization," in Encyclopedia of Database Technologies and Applications: IGI Global, 2005, pp. 683-687.
[3] G. Salton, A. Wong, and C. S. Yang, "A vector space model for automatic indexing," Commun. ACM, vol. 18, no. 11, pp. 613-620, 1975.
[4] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval," Information processing & management, vol. 24, no. 5, pp. 513-523, 1988.
[5] C.-Y. Tu, "The method of combining association rules with latent semantic analysis using relevance feedback information in document classification," Master’s degree, National Central University, Taiwan, 2014.
[6] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022, 2003.
[7] Lemur Project Group. (05/01). The Lemur Project. Available: http://www.lemurproject.org/
[8] A. Spink, D. Wolfram, M. B. Jansen, and T. Saracevic, "Searching the web: The public and their queries," Journal of the American society for information science and technology, vol. 52, no. 3, pp. 226-234, 2001.
[9] G. Salton, "The SMART system," Retrieval Results and Future Plans, 1971.
[10] S. E. Robertson and K. S. Jones, "Relevance weighting of search terms," Journal of the American Society for Information science, vol. 27, no. 3, pp. 129-146, 1976.
[11] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, "On the use of relevance feedback in IR-based concept location," in 2009 IEEE International Conference on Software Maintenance, 2009, pp. 351-360: IEEE.
[12] D. Kelly and N. J. Belkin, "Reading time, scrolling and interaction: exploring implicit sources of user preferences for relevance feedback," in Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 2001, pp. 408-409: ACM.
[13] C. Manning, P. Raghavan, and H. Schütze, "Introduction to information retrieval," Natural Language Engineering, vol. 16, no. 1, pp. 100-103, 2010.
[14] J. Bhogal, A. MacFarlane, and P. Smith, "A review of ontology based query expansion," Information processing & management, vol. 43, no. 4, pp. 866-886, 2007.
[15] B. Zhang, Y. Du, H. Li, and Y. Wang, "Query expansion based on topics," in 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008, vol. 2, pp. 610-614: IEEE.
[16] Z. Ye, J. X. Huang, and H. Lin, "Finding a good query‐related topic for boosting pseudo‐relevance feedback," Journal of the American Society for Information Science and Technology, vol. 62, no. 4, pp. 748-760, 2011.
[17] S. Chou and W. Chang, "The identification of distinguishing term characteristics from relevance feedback," Online Information Review, vol. 33, no. 4, pp. 745-760, 2009.
[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
[19] Z. Chen and Y. Lu, "A SVM based method for active relevance feedback," in 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, vol. 1, pp. 508-513: IEEE.
[20] T. Joachims, "A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization," Carnegie-mellon univ pittsburgh pa dept of computer science1996.
[21] H. Drucker, B. Shahrary, and D. C. Gibbon, "Relevance feedback using support vector machines," in ICML, 2001, pp. 122-129.
[22] H. Drucker, B. Shahrary, and D. C. Gibbon, "Support vector machines: relevance feedback and information retrieval," Information processing & management, vol. 38, no. 3, pp. 305-323, 2002.
[23] F. Sebastiani, "Machine learning in automated text categorization," ACM computing surveys (CSUR), vol. 34, no. 1, pp. 1-47, 2002.
[24] T. L. Griffiths and M. Steyvers, "Finding scientific topics," Proceedings of the National academy of Sciences, vol. 101, no. suppl 1, pp. 5228-5235, 2004.
[25] J.-X. Zeng, "The utilization of the semantic analysis technique in the application of relevance feedback," M.B.A thesis, National Central University, Taiwan, 2012.
指導教授 周世傑(Shih-Chieh Chou) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明