博碩士論文 106426027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.138.102.81
姓名 陳怡蓁(Yi-Zhen Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 使用分支定界法以及最小成本最大流量求最小庫存持有成本下之最大訂單允諾數量
(Using Branch and Bound Algorithm and Minimum Cost Maximum Flow for Maximizing Committed Order Quantities Under Minimum Holding Cost)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在此研究中,我們探討在C公司的n張訂單與m個供給,其環境為訂單的總需求數量大於公司生產的總供給數量,C公司允諾訂單的機制為採用批次可允諾量以及後向耗用模式,在一固定時間區間內將這一批的顧客需求做拉線的動作以找出哪些訂單是能夠被滿足哪些訂單是不會被滿足的。由於C公司的總供應量小於顧客的總需求量,我們不會允諾全部的需求訂單,所以需要將這些訂單做允諾的優先順序,知道哪些訂單可以被允諾、哪些訂單不會被允諾,以及被允諾的訂單其被供應的數量為多少來達到公司最大的效益,我們的研究目標為在最小持有庫存成本下求最大允諾數量。
為了求出此問題的最佳解,我們使用分支定界演算法以及最小成本最大流量計算最大化的允諾數量以及來計算出我們的目標。
摘要(英) Recently, the available-to-promise (ATP) function becomes critical in supply chain management, since it provides appropriate links between production resources and customer orders. In this research, company environment with n demands and m supplies is considered. It is assumed that the total quantity of demands are larger than that of supplies. Batch available-to-promise (batch ATP) and backward consumption mode are applied to commit order promise and fulfillment. Orders are collected periodically, then pegging is at a particular time point in order to find out which order can be promised. The company cannot commit all of demands because the total supplies are smaller than demands which is our assumption. Thus we need to schedule the priority of these orders to find out which order can be accepted or rejected, and the total of accepted demands are then obtained. The company objective is maximizing the committed quantities under minimum inventory holding cost.
In order to get the optimal solution for this problem, we present a branch and bound algorithm and the minimum cost maximum flow to get maximum committed quantities.
關鍵字(中) ★ 可承諾量
★ 批量
★ 訂單允諾順序
關鍵字(英) ★ available-to-promise
★ batch
★ committed priorities of orders
論文目次 目錄
摘要i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Problem definition 3
1.3 Research objectives 8
1.4 Research methodology 8
1.5 Research framework 9
Chapter 2 Literature Review 12
2.1 Batch available to promise 12
2.2 Branch and bound algorithm 13
Chapter 3 Methodology 16
3.1 Notations 16
3.2 The labeling function 17
3.3 Min-cost max-flow approach 18
3.4 Branching scheme 21
3.5 Bounding scheme 26
3.6 Branch and bound Algorithm 27
Chapter 4 Computational Analysis 30
4.1 Instance Generation 30
4.2 Validation of the branch and bound algorithm 31
4.3 Performance of the branch and bound algorithm 33
Chapter 5 Conclusion 37
5.1 Research Contribution 37
5.2 Research Limitation 37
5.3 Further Research 38
Reference 39
Appendix 42
參考文獻 Ababei, C., & Kavasseri, R (2011). Efficient network reconfiguration using minimum cost maximum flow-based branch exchanges and random walks-based loss estimations. IEEE Transactions on Power Systems, 26(1), 30-37.
Bozhenyuk, A., Gerasimenko, E., & Rozenberg, I (2012). The methods of maximum Flow and minimum cost flow finding in fuzzy network. Concept Discovery in Unstructured Data Workshop co-located with the 10th International Conference on Formal Concept Analysis. 1-12.
CHEN, C. Y., Zhao, Z., & Ball, M. O (2002). A model for batch advanced available‐to promise. Production and Operations Management, 11(4), 424-440.
Chen, J., & Dong, M (2014). Available-to-promise-based flexible order allocation in ATO supply chains. International Journal of Production Research, 52(22), 6717-6738.
Choi, S. Y., Shin, M. C., & Cha, J. S (2006). Loss reduction in distribution networks using cyclic best first search. International Conference on Computational Science and Its Applications, 312-321.
Dolan, A., & Aldous, J (1993). Networks and algorithms: an introductory approach. John Wiley & Sons,158-161.
Hadji, M., & Zeghlache, D (2012). Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. IEEE Fifth International Conference on Cloud Computing,876-882.
Jamal, J., Shobaki, G., Papapanagiotou, V., Gambardella, L. M., & Montemanni, R (2017). Solving the sequential ordering problem using branch and bound. IEEE Symposium Series on Computational Intelligence,1-9.
Jeong, B., Sim, S. B., Jeong, H. S., & Kim, S. W (2002) An available-to-promise system for TFT LCD manufacturing in supply chain. Computers & Industrial Engineering, 43(1-2), 191-212.
Jung, H (2010). An available-to-promise model considering customer priority and variance of penalty costs. The International Journal of Advanced Manufacturing Technology, 49(1-4), 369-377.
Kao, G. K., Sewell, E. C., & Jacobson, S. H. (2009). A branch, bound, and remember algorithm for the 1|r_i| ∑ t_i scheduling problem. Journal of Scheduling, 12(2), 163.
Kao, G. K., Sewell, E. C., Jacobson, S. H., & Hall, S. N. (2012). New dominance rules and exploration strategies for the 1| r_i |∑ U_i scheduling problem. Computational Optimization and Applications, 51(3), 1253-1274
Lin, J. T., Hong, I. H., Wu, C. H., & Wang, K. S (2010). A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains. Computers & Industrial Engineering, 59(4), 720-729.
Lin, Q., & Tordesillas, A (2014). Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions. Journal of industrial and management optimization, 10(1), 337-362.
Meyr, H. (2009). Customer segmentation, allocation planning and order promising in make-to-stock production. OR spectrum, 31(1), 229-256
Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19, 79-102.
Rabbani, M., Farshbaf-Geranmayeh, A., & Vahidi, F. (2018). A batch-wise ATP procedure in hybrid make-to-order/make-to-stock manufacturing environment. Journal of Quality Engineering and Production Optimization, 3(1), 1-12.
Ritt, M (2016). A branch-and-bound algorithm with cyclic best-first search for the permutation flow shop scheduling problem. IEEE International Conference on Automation Science and Engineering, 872-877.
Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm for the simple assembly line balancing problem. INFORMS Journal on Computing, 24(3), 433-442.
Sewell, E. C., Sauppe, J. J., Morrison, D. R., Jacobson, S. H., & Kao, G. K. (2012). A BB&R algorithm for minimizing total tardiness on a single machine with sequence dependent setup times. Journal of Global Optimization, 54(4), 791-812.
Sheen. G (2018) “min-cost max-flow model for determining job priority in ATP problem”, personal communication.
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明