博碩士論文 106453023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.17.28.48
姓名 張傑勛(Jie-Xun Chang)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 應用卷積式神經網路建立肝臟超音波影像輔助判別模型
(Applying CNN on Ultrasound Image of Fatty Liver Diagnosis)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 基於卷積神經網路之身分識別系統★ 能源管理系統電能補值方法誤差率比較分析
★ 企業員工情感分析與管理系統之研發★ 資料淨化於類別不平衡問題: 機器學習觀點
★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例★ 應用機器學習建立單位健保欠費催繳後繳納預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 肝病是台灣社會主要的文明病之一,在台灣成年男性上班族有脂肪肝的比例更高達49%。過去多以驗血方式或肝臟切片來進行脂肪肝的篩檢,但侵入式的篩檢方式,不但造成病患不適,同時也產生高昂成本,因此,具有非侵入式及便利性的肝臟超音波便成為最常用的檢測方式。然而,超音波診斷常受到醫師主觀意見影響,因此,如能提供輔助的決策判斷對醫師會有相當大的幫助。
本研究的目標在於利用卷積式神經網路(CNN)針對331位病患之肝臟超音波影像建立判斷模型並進行分類,與使用其驗血資料以機器學習方式建立之分類模型準確度進行比較。此外,本研究更進一步將機器學習與深度學習合併使用,試著找出較為適合之判斷方式。
實驗顯示以將CNN之特徵維度輸出,再以SVM進行分類,可以獲得0.821的準確率以及精確率0.862,較單純使用機器學習或是CNN來的更準確,在代替傳統侵入式篩檢方式進行輔助判別的可行性相當高。
摘要(英) Liver disease is one of the major civilized diseases in Taiwanese society. Even more, the percentage of adult male workers in Taiwan who have fatty liver is up to 49%. In the past years, blood tests and liver slices are the most often used for fatty liver screening. However, intrusive inspection methods not only cause discomfort but also high costs and potential risk to the patients.
This thesis proposes a deep learning method which uses a convolutional neural network (CNN) to model and classify liver ultrasound images of 331 patients, and to compare the accuracy of classification models established by machine learning algorithms with their blood test data. Furthermore, this study tries to combine machine learning with deep learning to find a more appropriate way to judge the ultrasound images of liver.
According to the experiment results, applying the SVM classification by the features extracted from CNN has better performance than using only machine learning methods. The accuracy, precision, recall and F1 score achieved 0.82, 0.862, 0.806 and 0.833 which are all better than machine learning methods with blood test data. Thus, it has a potential to diagnose fatty liver with CNN.
關鍵字(中) ★ 脂肪肝
★ 機器學習
★ 深度學習
★ VGG 模型
★ 卷積式神經網路
★ SVM
★ 支援向量機
關鍵字(英) ★ Fatty liver
★ Machine learning
★ SVM
★ MLP
★ CART
★ Deep learning
★ CNN
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章 文獻探討 5
2.1 超音波的基本學理 5
2.2 脂肪肝之相關探討 7
2.2.1 脂肪肝之致病機轉 7
2.2.2 脂肪肝之病理變化及病因 7
2.2.3 脂肪肝之病徵與治療與防範 9
第三章 研究方法 13
3.1 研究設計及架構 13
3.2 資料來源 14
3.3 機器學習 16
3.3.1 SVM 16
3.3.2 MLP 16
3.3.3 CART 16
3.3.4 Boosting 17
3.3.5 Bagging 17
3.4 資料增強 17
3.5 深度學習 19
3.5.1 卷積式神經網路介紹 19
3.5.2 卷積層 20
3.5.3 池化層 21
3.5.4 全連接層 22
3.5.5 Drop Out 22
3.6 AlexNet 23
3.7 VGG16 23
3.8 效能評估 24
3.8.1 五摺交叉驗證法(5-foldcross-validation) 24
3.8.2 混亂矩陣(Confusion matrix) 25
第四章 實驗結果與分析 27
4.1 敘述性統計 27
4.2 實驗環境 27
4.3 機器學習部分-SVM、MLP及CART之比較 27
4.4 機器學習部分-使用Bagging多重分類器增強 28
4.5 機器學習部分-使用Boosting多重分類器增強 29
4.6 深度學習部分 – AlexNet與VGG16 29
4.7 深度學習部分 – AlexNet與VGG16 合併SVM使用 30
4.8 綜合討論 31
第五章 結論與建議 32
5.1 研究結論與貢獻 32
5.2 研究限制 32
5.3 未來研究建議 33
參考文獻 34
參考文獻 1. A. Krizhevsky, I. S. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, pp. 1097-1105.
2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M. (2016). Tensorflow: Asystemforlarge-scalemachinelearning. InOSDI,volume16, pp. 265-283.
3. Breiman, L. (1996). Bagging predictors. Machine Learning, pp. 123–140.
4. ChaurasiaV., & PalS. (2013). Data Mining Approach to Detect Heart Dieses. International Journal of Ad-vanced Computer Science and Information Technology (IJACSIT). .
5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A largescale hierarchical image database. Computer Vision and Pattern Recognition (pp. 248-255). IEEE Conference.
6. EitelFD. Kleine, S.B.Kleine,. (1985). Pathogenesis, Clinical Aspects and Development of Fatty Liver. Dentsche Zeitschrift fur Verdauungs-und Stoffwechselkrankheiten, 頁 111-116.
7. Fusamoto H., S. K. (1991). Obesity and Liver Disease: Evaluation of Fatty Infiltration of the Liver Using Ultrasonic Attenuation. Journal of Nutritional Science & Vitaminology, pp. S71-77.
8. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770-778).
9. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. doi:arXivpreprintarXiv:1207.0580
10. HouriganLF, G. M. (1999). Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology., pp. 1328-1330.
11. Karen SimonyanZissermanAndrew. (2014). Very deep convolutional networks for large-scaleimagerecognition. arXivpreprintarXiv, 頁 1409-1556.
12. Kawai N.T., Kawai K.Kawai. (1995). Ultrasonic and Laboratory Studies on Fatty Liver in White-Collar Workers. Japanese Journal of Gastroenterology(92), 頁 1058-1068.
13. Krizhevsky Alex, S. I. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processingsystems, pp. 1097–1105.
14. L. BreimanH. Friedman, R. A. Olshen, C. J. StoneJ. (1984). Classification and Regression Tree. Wadsworth.
15. Li, Guokuan; Luo, Yu; Deng, Wei; Xu, Xiangyang; Liu, Aihua; Song, Enmin. (2008). Computer aided diagnosis of fatty liver ultrasonic images based on support vector machine. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
16. Mendler MH.P., Le Sidaner A., Lavoine E., Labrousse F., Sautereau D., Pillegand B.Bouillet. (1998). Dual - Energy CT in the Diagnosis and Quantification of Fatty Liver:Limited Clinical Value in Comparison to Ultrasound scan and Single - energy CT. Journal of Hepatology, (頁 785-794).
17. M-H, H., J-C, Y., C-K, N., C-C, Y., Y-H, Y., & S-K, Y. (2006). Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of Taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults. Journal of clinical gastroenterology, pp. 745-752.
18. NasrallahWills, CE.jr. Galambos, JT.SM. (1981). Hepatic Morphology in Obesity. Digestive Diseases and Sciences, 頁 325-327.
19. R. Girshick, J. D. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587.
20. Shin HC., R. H. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, vol. 35, pp. 1285-1298.
21. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scaleimagerecognition. arXivpreprintarXiv:, pp. 1409-1556.
22. Targher G;Day CP; Bonora E. (2010). Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. New England Journal of Medicine, 363(14), pp. 1341-1350.
23. Tolman, K., & Dalpiaz, A. (2007). Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag, 1153-1163.
24. Ueno, T. S. (1997). Therapeutic Effects of Restricted Diet and Exercise inObese Patients with Fatty Liver. Journal of Hepatology, (pp. 103-107).
25. Vapnik V., C. C. (1995). Support-vector networks. Machine learning, vol. 20, pp. 273-297.
26. Verrijken, A. S. (2011). European Endocrinology, pp. 96-103.
27. Y. Bar, I. D. (2015). Deep learning with non-medical training used for chest pathology identification. Proc. SPIE, p. 94140.
28. Yajima Y., O. K. (1983). Ultrasonographical Diagnosis of Fatty Liver:Significance of the Liver - Kidney Contrast. Tohoku Journal of Experimental Medicine, (pp. 43-50).
29. Yangqing JiaShelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor DarrellEvan. (2004). Caffe: Convolutional Architecture for Fast Feature Embedding.
30. Zhang Xiangyu, Z. J. (2015). Accelerating Very Deep Convolutional Networks for Classification and Detection. arXiv, pp. 4114-4229.
31. 王朝欣羅海韻,梁錦華,王鐘貴. (1985). 腹部超音波的脂肪肝診斷. 中華民國消化系醫學會第十五次學術演講年會論文集, (頁 12-13).
32. 朱娟秀. (1997). 脂肪肝之病理學. 中華民國內科醫學會八十六年學術演講會論文集, (頁 30-32).
33. 陳信成黃志富,王良彥,張文宇. (1997). 脂肪肝成因與臨床鑑別診斷. 中華民國內科醫學會八十六年學術演講會論文集, (頁 26-28).
34. 廖運範陳東榮. (1992). 台灣肝臟病系列,四十三、脂肪肝. 當代醫學,第十九卷第七期, 568-572.
35. 劉正典. (1997). 酒精性脂肪肝. 中華民國內科醫學會八十六年學術演講會論文集, (p. 33).
36. 衛生福利部. (2019年3月2日). 106年國人死因統計結果. 擷取自 衛生福利部: https://www.mohw.gov.tw/cp-16-41794-1.html
37. 譚健民吳昭新. (1986). 脂肪肝之超音波影像診斷. 台灣醫誌(85), 45-53.
38. 蘇維文. (2019). 認識脂肪肝. 擷取自 彰化基督教醫院: https://www.cch.org.tw/vmpc/news/news_detail.aspx?oid=3323
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2019-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明