博碩士論文 106521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.226.245.48
姓名 許瑞祥(Jui-Hsiang Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析
(Dark and Illumination Characteristics Analysis of InGaAs/InP Single Photon Avalanche Diodes Using Sinusoidal Wave Gating)
相關論文
★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討
★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-10-28以後開放)
摘要(中) 近年來砷化銦鎵/磷化銦單光子雪崩型偵測器被廣為研究,此種偵測器可吸收近紅外光,因此可用於以光纖通訊為基礎的量子通訊與量子電腦;然而,此材料系統在磊晶時容易產生缺陷,因此相較於矽製程的單光子雪崩型偵測器,會有較高的暗計數與二次崩潰效應,使得許多應用會受限於暗計數而無法達到弱光且長距離的偵測,本論文將比較正弦波閘控模式與傳統脈衝閘控模式,並將元件降溫以研究暗計數在兩種操作模式下的特性表現,以期作為各應用中單光子偵測器的操作準則。
  在本論文中我們以正弦波閘控模式操作元件,因其相較於傳統的脈衝閘控模式操作,能有效降低電容耦合訊號來減少錯誤訊號且可降低辨別位準;實驗中我們比較此兩種操作模式的暗計數在不同溫度下、不同頻率下以及不同交流偏壓振幅下的特性表現。首先將操作頻率固定(1MHz)後改變溫度,發現元件以正弦波閘控模式操作的暗計數在所有溫度範圍皆不比脈衝閘控模式的操作來的好;然而,當我們進行變頻率截取暗計數的實驗卻發現正弦波閘控模式操作在高頻下擁有較好的暗計數表現,此歸諸於越高頻的情況下閘控寬度越短。我們更進一步在固定的超額偏壓下,利用調變交流偏壓振幅以改變閘控寬度,當交流偏壓振幅越大,閘控寬度越小,實驗結果發現當溫度介於100K至200K之間可有效利用調變交流偏壓振幅來改善暗計數,於200K時暗計數機率更是低於10-4 %。
摘要(英) In recent years, InGaAs/InP single photon avalanche diodes (SPADs) have been widely studied. The detectors are capable of detecting near infrared light, therefore they are commonly used for the applications based on optical fiber links such as quantum communication and quantum computation. The III-V based SPADs have higher dark count as compared to the Si-based SPAD because III-V materials is prone to defects in epitaxy, which restricts the practical applications of low-light level and long range detection. In this thesis, we compare the dark count characteristics of SPAD under two different operation modes of the sinusoidal wave gated mode and the pulsed gated mode, anticipating that our investigation could provide an operation guideline for SPAD-based applications.
  In this work, we operate the SPAD using sinusoidal wave gated mode for that it could effectively circumvent the capacitive signals and hence reduce the false counts as well as lower the discrimination level as compared to the SPAD using pulsed gated mode. In experiment, the dark count rates are compared for two different gated modes under various conditions, including temperature, operating frequency, and peak-to-peak amplitude of sinusoidal wave. We find that the dark count rate for pulsed gated mode performs better than that for sinusoidal wave gated mode at the whole temperature range. However, while the operating frequency is varied, the DCP shows distinct behavior for such two operation modes. The DCP for SPAD under sinusoidal wave gating performs better at high operating frequency, which is attributed to the smaller effective gate window at higher frequency. Based on this concept, we tend to tune the effective gate window by varying the peak-to-peak amplitude of sinusoidal wave. Our results show the DCP can be effectively improved by increasing the peak-to-peak amplitude of sinusoidal wave at the temperature range of 100 K to 200 K. It is worthy to especially point out that the dark count probability per gate is suppressed to lower than 10-4 % at the temperature of 200K.
關鍵字(中) ★ 單光子崩潰二極體
★ 正弦波閘控模式
★ 有效閘控寬度
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
一、緒論 1
1-1前言 1
1-1-1光電倍增管 3
1-1-2光崩潰二極體 6
1-1-3負回饋崩潰二極體 8
1-1-4光偵測器應用 9
1-2研究動機 11
1-2-1正弦波閘控操作 11
1-2-2光子數目解析 13
1-3論文架構 14
二、單光子雪崩二極體 15
2-1單光子雪崩二極體特性 15
2-1-1二極體結構 15
2-1-2元件物理 19
2-1-3崩潰機制 22
2-2元件操作原理與搭配電路 24
2-2-1自由運作電路(Free running mode circuit) 24
2-2-2閘控模式(Gated mode) 26
2-2-3正弦波閘控模式 (Sinwave gated mode) 28
2-3元件特性參數介紹 30
2-3-1暗計數(Dark count rate) 30
2-3-2閘控寬度(Gate window) 34
2-3-3光子偵測效率(Photon detection efficiency) 35
2-3-4光響應度 37
三、量測系統架構與流程 38
3-1電流-電壓量測 39
3-2閘控模式與正弦波閘控模式量測 41
3-2-1閘控模式(Gated mode) 41
3-2-2正弦波閘控模式(Sinwave gated mode) 43
3-3光路架構與量測系統 45
四、量測結果分析與討論 47
4-1變溫電流-電壓量測 47
4-2變溫暗計數量測 49
4-3變頻率低溫量測 57
4-4 PDE量測 60
伍、結論與未來展望 62
參考文獻 63
參考文獻 [1] Aurelio Ponz,et al.” Laser Scanner and Camera Fusion for Automatic Obstacle Classification in ADAS Application,January 2016
[2] C. Mathas. ADAS takes greater control in 2015.Available:
http://www.edn.com/design/automotive/4437761/ADAS-takes-greater-control-in-2015
[3] Yoshikazu Takeda et al. "Electron mobility and energy gap of In0.53Ga0.47As on InP substrate." Journal of Applied Physics,vol. 47, pp 5405, August, 1976.
[4] H.Kyushima et al. “Photomultiplier Tube of New Dynode configuration” IEEE Transactions on nuclear science, VOL. 41, NO. 4. AUGUST 1994
[5] Wikipedia,Photomultiplier tube. Available: https://en.wikipedia.org/wiki/Photomultiplier_tube
[6] M. Babicz et al. “Test and characterization of 400 Hamamatsu R5912-MOD photomultiplier tubes for the ICARUS T600 detector” Journal of Instrumentation, Volume 13, October 2018
[7] Micro Photon Devices. Available:
http://www.micro-photon-devices.com/Products/Discontinued/InGaAs-InP
[8] Thomas Gerrits et al. “High-efficiency superconducting single-photon detectors” NIST ,20th June 2018
[9] J. P. R. David and C. H. Tan. "Material Considerations for Avalanche Photodiodes." IEEE J. Sel. Top. Quant, vol. 14, pp. 998–1009, 2008.
[10] H. Ando et al. "Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 mm." IEEE J. Quantum. Electron, vol.QE-14, no. 11, pp. 804–809, Nov. 1978
[11] K.Nishida et al. “InGaAsP heterostructure avalanche photodiodes with high avalanche gain” Applied Physics Letters, vol. 35,pp. 251-253, 1979.
[12] J.C. Campbell et al. “High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions” Electronics Letters, vol.19,p.818,1983.
[13] Lacaita et al. "Single-photon detection beyond 1 microm: performance of commercially available InGaAs/lnP detectors." Appl Opt, 80vol. 35, pp. 2986-96, Jun 1996.
[14] D. Stucki et al. "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs." Journal of Modern Optics,vol. 48, pp. 1967-1981, 2001.
[15] S. Pellegrini et al. "Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector." IEEE Journal of Quantum Electronics,vol. 42, pp. 397-403, 2006.
[16] Mark A. Itzler, Xudong Jiang, Bruce Nyman, and Krystyna Slomkowski "InP-based negative feedback avalanche diodes", Proc. SPIE 7222, Quantum Sensing and Nanophotonic Devices VI, 72221K (26 January 2009);
[17] Wikipedia, Work function, available: https://en.wikipedia.org/wiki/Quantum_key_distribution
[18] Ali Ibnun Nurhadi,et.al. ” Quantum Key Distribution (QKD) Protocols: A Survey” 2018 4th International Conference on Wireless and Telematics (ICWT)
[19] Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson Pet al. “Experiments on longwavelength (1550 nm) plug and play quantum cryptography systems” Opt Express1999;4: 383–387.
[20] Kosaka H, Tomita A, Nambu Y, Kimura T, Nakamura K. Single-photon interferenceexperiment over 100 km for quantum cryptography system using balanced gated-mode photon detector. Electron Lett2003;39: 1199–1201.
[21] J.Zhang et al. “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes” Appl. Phys. Lett. 95, 091103 (2009).
[22] Nino Walenta et al, “Sine gating detector with simple filtering forlow-noise infra-red single photon detectionat room temperature” Journal of Applied Physics 112, 063106 (2012).
[23] Leaf A. Jiang et al. “Photon-number-resolving detector with 10 bits of resolution”, Phys. Rev. A 75, 062325 – Published 21 June 2007
[24] Robert h. hadfield “single-photon detectors for optical quantum information applications”, Nature Photonics volume 3, pages 696–705 (2009)
[25] Mingguo Liu et al. “Low Dark Count Rate and High Single-PhotonDetection Efficiency Avalanche Photodiodein Geiger-Mode Operation” IEEE Photonics Technology Letters ( Volume: 19 , Issue: 6 , March15, 2007 )
[26] Fabio Acerbi et al. “Design Criteria for InGaAs/InPSingle-Photon Avalanche Diode”, IEEE Photonics Journal (Volume: 5 , Issue: 2 , April 2013)
[27] Vurgaftman, J. R. Meyer “Band parameters for III–V compound semiconductors and their alloys” Journal of Applied Physics 89, 5815 (2001)
[28] Safa Kasapa) and J. A. Rowlands “Lucky drift impact ionization in amorphous semiconductors” Journal of Applied Physics 96, 2037 (2004)
[29] N.Namekata, S.Adachi, and S.Inoue, “800MHz Single-photon detection at1550-nm using an InGaAs/InP avalanchephotodiode operated with a sine wavegating,”Opt. Express,vol. 14, no. 21, pp. 10043–10049, Oct.2006
[30] N.Namekata, S.Adachi, and S.Inoue, “1.5GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs-InP avalanche photodiode,”Opt. Express,vol. 17, no. 8, pp. 6275–6282, Apr.2009.
[31] K. Sugihara, E. Yagyu, and Y. Tokuda, "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode," Journal of Applied Physics, Vol. 99, pp. 124502-1–124502-5, Jun. 2006
[32] Xudong Jiang, et al, "InGaAsP–InP Avalanche Photodiodes for Single Photon Detection," IEEE J. Quantum Electronics, Vol. 13, pp. 895-905, Jul./Aug. 2007
[33] Franco Zappa, Alberto Tosi, Sergio Cova, "InGaAs SPAD and electronics for low time jitter and low noise," Proc. of SPIE, Vol. 6583, pp. 65830E-1–65830E-12, Mar. 2007
指導教授 李依珊 審核日期 2019-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明