博碩士論文 106521007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.218.13.235
姓名 童禹謀(Yu-Mou Tung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點奈米線之熱電特性
(Thermoelectric properties of quantum dot nanowires)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討了在線性響應下和金屬電極相連的量子點超晶格奈米線(SLNW)的熱電特性。對於短SLNW,我們討論不同的Transmission Functions (TFs) 對熱電係數的影響,當熱離子輔助穿隧程序(TATP)支配電極間電子傳輸時,quasi-square shape有比boxcar shape大的功率因數。對於長SLNW,席貝克係數 (Seebeck coefficient)不受電子穿隧率及能階簡併的影響,這是與電導率和電子熱導率不同的。而當電極的費米能量位於次能帶之間的間隙時,該區域中的熱電效率受到鄰近效應的抑制。在TATP中的熱電效率比直接隧穿程序大得多,因為席貝克係數在直接穿隧程序中的值非常小。最後,我們已經證明,由於TATP中能階簡併態的增加,熱電優值也得到了提升。
摘要(英) We theoretically study the thermoelectric properties of quantum dot nanowire (SLNW) connected to electrodes in the linear regime. For a short SLNW, we clarify the effects of different Transmission Functions (TFs) on the thermoelectrical coefficients. When thermionic assisted tunneling procedure (TATP) dominates electron transport between electrodes, the power factor given by TF with quasi-square shape is larger than that of TF with boxcar shape. Unlike electrical conductance and electron thermal conductance, the Seebeck coefficient is a very robust thermoelectrical quantity with respect to electron tunneling rate, energy level fluctuation and energy level degeneracy for a long SLNW. When the Fermi energy of electrodes locates at gap between subbands, thermoelectric efficiency in this region is sup-pressed by the proximity effect. The thermoelectric efficiency is much large in TATP than in direct tunneling procedure, because the Seebeck coefficient is much small in the direct tunneling procedure. Finally, we have demonstrated that the figure of merit is enhanced due to increase of energy level degeneracy in the TATP.
關鍵字(中) ★ 量子點
★ 奈米線
★ 熱電特性
關鍵字(英) ★ Thermoelectric
★ quantum dot
★ nanowires
論文目次 摘要 i
Abstract ii
第一章、導論 1
1-1:前言 1
1-2:熱電效應 1
1-3:研究動機 5
第二章、系統模型與公式推導 6
2-1:系統模型建立 6
2-2:系統電子總能 7
2-3:格林函數分析 8
2-4:熱電優值 9
第三章、量子點奈米線系統的ZT值之數值分析 11
3-1:短量子點奈米線系統 11
 3-1-1:不同Γ下量子點能階和費米能階的差與電導Ge分析 11
 3-1-2:不均勻電子躍遷強度下之Ge、S、PF分析 12
 3-1-3:Boxcar form和Quasi-square form之比較分析 14
3-2:長量子點奈米線系統 16
 3-2-1:N=50的量子點奈米線之Ge、S、PF分析 16
 3-2-2:t_c的調變對熱電參數的影響 17
 3-2-3: ELF對於量子點奈米線系統的影響 18
3-3:考慮多束縛態的量子點奈米線系統 20
 3-3-1:考慮多束縛態的量子點奈米線系統 20
 3-3-2:簡併態對ZT值的影響 21
第四章、結論 23
參考文獻 24

iii
參考文獻 [1] E. Velmre, “Thomas Johann Seebeck and his contribution to the modern science and technology” Electronics Conference (BEC) 2010 12th Biennial Baltic, Tallinn(2010).
[2] Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling " Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling” Infosearch Limited London (1957).
[4] A. Majumdar, “Thermoelectricity in Semiconductor Nanostructures” Science 303, 777 (2004).
[5] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys” Nano Lett. 8, 4670 (2008).
[6] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor” Phys. Rev. B 47, 16631 (1993).
[7] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit” Phys. Rev. B 47, 12727 (1993).
[8] Y. Yu. Peter, “Effect of Quantum Confinement on Electrons and Phonons in Semiconductors” Fundamentals of Semiconductors, 469, Springer, Berlin, Heidelberg (2010).
[9] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.‐P. Fleurial, and P. Gogna “New Directions for Low‐Dimensional Thermoelectric Materials” Advanced Materials 19, 1043 (2007).
[10] Y. M. Lin and M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires” Phys. REV. B 68, 075304 (2003).
[11] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit " Phys. Rev. B 53, R10493 (1996).
[12] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices” Science 297, 2229 (2002).
[13] D. M. T. Kuo and Y. C. Chang, J. Vac., “Thermoelectric properties of a chain of coupled quantum dots embedded in a nanowire” Science and Technology, 31, 04 D108 (2013).
[14] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors” Springer, Heidelberg (1996).

[15] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region” Phys. Rev. Lett. 68, 2512(1992).
[16] D. M. T. Kuo and Y. C. Chang “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev. B 81, 205321(2010).
[17] D. M. T. Kho, S. Y. Shiau and Y. C. Chang “Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system” Phys. Rev. B 84, 245303 (2011).
[18] B. H. Teng, H. K. Sy, Z. C. Wang, Y. Q. Sun, H. C. Yang, “Exact analytical solution to the electronic transport in an N-coupled quantum dot array” Phy. Rev. B 75, 012105 (2007).
[19] D. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang and A. Majumdar, Appl., “Thermal conductivity of individual silicon nanowires” Phys. Lett.83, 2934 (2003).
[20] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D.Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires” Phys. Rev. Lett. 101, 105501(2008).
[21] M. Hu and D. Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity” Nano Lett. 12. 5487(2012).
[22] J. H. Lee, J. W.Lim and P. D. Yang, “Ballistic Phonon Transport in Holey Silicon” Nano Lett.15, 3273 (2015).
[23] D. M. T. Kuo, C. C. Chen and Y. C. Chang, “Optimizing thermoelectric efficiency of superlattice nanowires at room temperature” Physica E 102, 39 (2018).
[24] R. S. Whitney, “Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output” Phys. Rev. B 91, 115425 (2015).
[25] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction” Phys. Rev. B 78,161406(R) (2008).
[26] D. M. T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev. B 81, 205321 (2010).
[27] H. Karbaschi, J. Loven, K. Courteaut,A. Wacker, and M. Leijnse, “Nonlinear thermoelectric efficiency of superlattice-structured nanowires” Phys. Rev. B, 94, 115414 (2016).
[28] D. M. T Kuo and Y. C. Chang, "Dynamic behavior of electron tunneling and dark current in quantum well systems under an electric field" Phys. Rev. B 60, 15957 (1999).
[29] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects" Energy Environ Sci, 2, 466 (2009).
[30] D. M. T. Kuo, C. C. Chen and Y. C. Chang, "Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy" Phys. Rev. B 95, 075432 (2017).
[31] C. C. Chen, D. M. T. Kuo and Y. C. Chang, "Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules" Phys. Chem. Chem. Phys. 17, 19386 (2015).
[32] D. M. T. Kuo and Y. C. Chang, J. Vac. Science and Technology, 31, 04D108 (2013).
[33] J. Gooth, M. Borg,H. Schmid,V. Schaller, S. Wirths, K. Moselund, M. Luisier, S. Karg, and H. Riel, "Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects" Nano. Lett. 17, 2596 (2017).
[34] J. C. E. Saldan, Y. M. Niquet, J. P. Cleuziou,E. J. H. Lee, D. Car, S. R. Plissard, E. P. A. M. Bakkers,and S. De Franceschi, "Split-Channel Ballistic Transport in an InSb Nanowire" Nano Lett. 18, 2282 (2018).
[35] P. A. Erdman, F. Mazza, R. Bosisio, G. Benenti, R. Fazio, and F. Taddei, "Thermoelectric properties of an interacting quantum dot based heat engine" Phys. Rev. B 95, 245432 (2017).
[36] W. Lu, J. Xiang, B. P. Timko, Y. Wu and C. M. Lieber, "One-dimensional hole gas in germanium/silicon nanowire heterostructures" Proc. natl. Acad. Sci. U. S. A. 102, 10046 (2005).
[37] A. J. Minnich, H. Lee, X. W. Wang, G. Joshi, M. S. Dresselhaus,Z. F. Ren, G. Chen and D. Vashaee, "Modeling study of thermoelectric SiGe nanocomposites" Phys. Rev. B 80, 155327 (2009).
指導教授 郭明庭(David Ming-Ting Kuo) 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明