博碩士論文 106521013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.226.245.48
姓名 林子棠(Zih-Tang Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 分析負電容堆疊式環繞閘極場效電晶體之特性及負電容鰭式場效電晶體之隨機電報雜訊
(Performance Analysis of Stacked Gate-All-Around Negative Capacitance FETs and RTN Analysis of Negative Capacitance FinFETs)
相關論文
★ 超薄層異質通道場效電晶體及單石三維靜態隨機存取記憶體考慮負交疊設計之研究★ 負電容場效電晶體之微縮與變異度分析
★ 利用線穿隧及非均勻通道厚度提升三五族 穿隧場效電晶體性能之研究★ 鐵電場效電晶體記憶體之穩定度及性能分析
★ 提升負電容穿隧場效電晶體效能之最佳化設計★ 研究製程變異度對負電容場效電晶體與電路的類比性能之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-10-1以後開放)
摘要(中) 隨著人工智能(AI)和物聯網(IoT)等應用的發展,高性能元件和超低功耗系統更顯得重要,而降低電源電壓(Supply voltage)是實現較低靜態和動態功耗的方法之一。因此陡坡元件(Steep slope device)對於超低功耗系統應用是必要的,若想要具有更好的Ion/Ioff比率以及次臨界擺幅低於60mV/dec,負電容場效電晶體(Negative Capacitance Field Effect Transistor, NCFET)是很有機會的前瞻元件之一。
本文利用TCAD軟體結合Landau-Khalanikov方程式,分析7奈米以下技術節點之先進元件在堆疊鐵電層後的電特性。在次5奈米技術節點,奈米線場效電晶體和奈米片場效電晶體是很有潛力的元件,奈米線場效電晶體和奈米片場效電晶體(Negative capacitance Nanowire/Nanosheet FETs)可利用堆疊技術,在不增加面積的情況下,提升元件導通電流。在此研究中,我們研究並分析堆疊不同層的負電容奈米線場效電晶體和負電容奈米片場效電晶體的特性,堆疊一層的負電容奈米線場效電晶體之電容匹配較堆疊三層的負電容奈米線場效電晶體優異,所以堆疊一層的負電容奈米線場效電晶體有比堆疊三層的負電容奈米線場效電晶體更低的次臨界擺幅。此外,堆疊一層的負電容奈米線場效電晶體之C¬MOS較堆疊一層的負電容奈米片場效電晶體大,使得堆疊一層的負電容奈米線場效電晶體比堆疊一層的負電容奈米片場效電晶體有更大的電壓增益(Av,max)。進一步討論,奈米片場效電晶體的載子遷移率較奈米線場效電晶體大,使奈米片場效電晶體的導通電流較奈米線場效電晶體大。但是由於負電容奈米線場效電晶體有更大的電壓增益,使負電容奈米線場效電晶體與負電容奈米片場效電晶體的導通電流差縮小。
其次,由於元件尺寸不斷縮小,當通道面積小於1μm2時,可能會只有單一顆氧化層陷阱電荷存在於通道表面。陷阱電荷對載子的捕捉和發射會導致類似隨機電報訊號造成通道電流的離散調變。因此,我們模擬單陷阱電荷對負電容鰭式場效電晶體所造成的隨機電報雜訊(Random Telegraph Noise, RTN),並且與傳統的鰭式場效電晶體做比較。負電容鰭式場效電晶體有較好的抗隨機電報雜訊能力,以及較低的臨界電壓變異度。另外我們提出利用不同摻雜型態的基板,進一步增加元件抗隨機電報雜訊能力並改善其臨界電壓變異度。
最後,我們將負電容鰭式場效電晶體運用於邏輯電路上(Inverter、NAND、MUX),並且分析操作電壓(Supply voltage)、表面陷阱電荷(Interface trap charge)、以及通道長度變異度(Gate length variation)對於延遲時間(Delay time)的影響。相較於傳統的鰭式場效電晶體,負電容鰭式場效電晶體因為有較大的導通電流,所以有較低的延遲時間。且負電容鰭式場效電晶體因汲極引起能障上升,所以在降低操作電壓時,負電容鰭式場效電晶體的導通電流下降較不明顯,因此負電容鰭式場效電晶體的延遲時間,在降低操作電壓時所受到的影響較小。另外,負電容鰭式場效電晶體等效上的氧化層厚度較薄,所以受到表面陷阱電荷的影響也比傳統的鰭式場效電晶體來的小。我們也比較傳統鰭式場效電晶體與負電容鰭式場效電晶體在三個邏輯電路的能量延遲積(Energy Delay Product),我們發現負電容鰭式場效電晶體可以操作在較低的供應電壓,並表現出較好的能量延遲積。
摘要(英) With the development of applications such as artificial intelligence (AI) and Internet of Things (IoT), high-performance components and ultra-low-power systems become more important, and reducing the supply voltage is a way to achieve lower static and dynamic power consumption. However, lowering the supply voltage also reduces the on-current (Ion) of the semiconductor component. Therefore, the steep slope device is necessary for ultra-low power system applications. However, the traditional MOSFETs are limited by the Bozeman distribution at room temperature, and the subthreshold swing cannot be lower than 60mV/dec. Negative Capacitance Field Effect Transistor (NCFET) with better Ion/Ioff ratio is one of the most promising candidate for ultra-low power system.
In this dissertation, the gate-all-around (GAA) stacked negative capacitance nanowire (NC-NW) and nanosheet (NC-NS) FETs are analyzed comprehensively for the first time. Compared with the 3-stacked (3S) NC-NW FET, 1-stacked (1S) NC-NW FET shows larger maximum internal voltage gain (Av,max) due to better capacitance matching, lower minimum subthreshold swing (SS), and larger Ion improvements over nanowire (NW) FET. As the vertically stacked number of NW FETs increases, the effective Ion per unit width decreases due to the increased series resistance. At low gate bias (Vg,ext = 0V to 0.16V), 1S NC-NW FET with larger MOS capacitance (CMOS) with positive ferroelectric capacitance (CFE > 0) shows lower Av (at low Vg,ext) than the 1S NC-NS FET. As gate voltage increases, 1S NC-NW FET enters the negative ferroelectric capacitance region (CFE < 0), and therefore 1S NC-NW FET exhibits higher Av,max than the 1S NCNS FET due to its larger CMOS. Besides, 1S NC-NW FET exhibits +90% Ion improvements over NW FET, and 1S NC-NS FET shows +44% Ion improvements over nanosheet (NS) FET. NW FET exhibits lower DIBL than NS FET due to its better electrostatic control, while NC-NW FET shows more significant negative DIBL than the NC-NS FET due to its larger Av difference between high and low drain bias. NS FET with higher mobility shows larger Ion than the NW FET. However, the Ion difference between NC-NS and NC-NW becomes smaller because NC-NW exhibits larger Av,max.
Second, we investigate the impacts of single trap induced Random Telegraph Noise (RTN) on negative capacitance FinFET (NC-FinFET) with P-type and N-type substrates, respectively, compared to FinFET. The trap position dependent RTN amplitude (∆Ids/Ids) along the channel length and fin height directions are examined. Our results show that NC-FinFET exhibits smaller RTN amplitude than FinFET due to its smaller trap induced threshold voltage shift (ΔVT). Besides, for both NC-FinFET and FinFET, N-type substrate shows smaller RTN amplitude and RTN induced ΔVT variations than P-type substrate. In other words, RTN induced variations can be suppressed by substrate doping optimization for NC-FinFET and FinFET.
  We investigate the NC-FinFET logic circuits (Inverter, NAND, MUX) considering the impact of supply voltage, interface trap charge, and channel length variation on the delay time. NC-FinFET with higher Ion exhibits lower delay time than the conventional FinFET. The Ion of NC-FinFET slightly decreases when it operates at lower supply voltage, which leads to increasing of the delay time. In addition, NC-FinFET with thinner effective oxide thickness shows better immunity to the surface trap charge induced threshold voltage shift compared to the conventional FinFET. Our results show that the NC-FinFET has better performance in Energy Delay Product (EDP) compared to the conventional FinFET at low supply voltage.
關鍵字(中) ★ 鐵電材料
★ 負電容場效電晶體
★ 奈米線場效電晶體
★ 奈米片場效電晶體
★ 鰭狀場效電晶體
★ 陷阱電荷
★ 隨機電報雜訊
關鍵字(英) ★ Ferroelectric material
★ negative capacitance FET (NCFET)
★ Gate-All-Around
★ Nanowire FET
★ Nanosheet FET
★ FinFET
★ Interface trap charge
★ Random Telegraph Noise (RTN)
論文目次 摘要 I
Abstract IV
致謝 VII
圖目錄 XI
表目錄 XVI
第一章 導論 1
1.1 背景與相關研究 1
1.1.1 鐵電材料和負電容場效電晶體 3
1.2 研究動機 8
1.3 論文架構 9
第二章 負電容環繞式閘極場效電晶體電性分析 10
2.1 前言 10
2.2 負電容環繞式閘極場效電晶體結構與模擬參數 11
2.3 模擬架構 13
2.4 堆疊層數對負電容奈米線場效電晶體之電性影響 14
2.5 負電容奈米線場效電晶體與負電容奈米片場效電晶體電性分析……… 19
2.6 結論 29
第三章 表面陷阱電荷對負電容鰭式場效電晶體元件與電路之特性影響 32
3.1 前言 32
3.2 元件模擬參數與元件結構 33
3.3 負電容鰭式場效電晶體在不同摻雜基板之隨機電報雜訊振幅變異度….. 35
3.4 通道長度變異與表面陷阱電荷對負電容鰭式場效電晶體在電路上之影響 48
3.5 結論 57
Chapter 4 總結 60
參考文獻 63
參考文獻 [1] International Roadmap for Devices and Systems (IRDS), 2016. [https://irds.ieee.org/]
[2] C. C. Wu et al., "High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme," 2010 International Electron Devices Meeting, 2010, pp. 27.1.1-27.1.4.
[3] T. Yamashita et al., "Sub-25nm FinFET with advanced fin formation and short channel effect engineering," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 14-15.
[4] J. A. Smith et al., "Investigation of electrically gate-all-around hexagonal nanowire FET (HexFET) architecture for 5 nm node logic and SRAM applications," 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, 2017, pp. 188-191.
[5] S. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook and M. Na, "Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, 2015, pp. 1-3.
[6] Suk, Sung et al., "High performance 5nm radius Twin Silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability" Technical Digest - International Electron Devices Meeting, IEDM, 2005. 717 - 720. 10.1109/IEDM.2005.1609453.
[7] J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Physical Review, vol. 17, pp. 475, 1921.
[8] J. Müller et al., "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," 2012 Symposium on VLSI Technology - Digest of Technical Papers, 2012, pp. 25-26.
[9] H. Mulaosmanovic et al., "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells," 2015 IEEE International Electron Devices Meeting, 2015, pp. 26.8.1-26.8.3.
[10] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.7.1-19.7.4.
[11] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Lett., vol. 8, no. 2, pp. 405–410, 2008.
[12] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin and C. Hu, "Low power negative capacitance FETs for future quantum-well body technology," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2013, pp. 1-2.
[13] H. Ota, T. Ikegami, J. Hattori, K. Fukuda, S. Migita and A. Toriumi, "Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration," 2016 IEEE International Electron Devices Meeting, 2016, pp. 12.4.1-12.4.4.
[14] M. H. Lee et al., "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs," 2016 IEEE International Electron Devices Meeting, 2016, pp. 12.1.1-12.1.4.
[15] Z. Krivokapic et al., "14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications," 2017 IEEE International Electron Devices Meeting, 2017, pp. 15.1.1-15.1.4.
[16] P. Sharma, J. Zhang, K. Ni and S. Datta, "Time-Resolved Measurement of Negative Capacitance," in IEEE Electron Device Letters, vol. 39, no. 2, pp. 272-275, Feb. 2018.
[17] University of Cambridge,Teaching and learning packages, [https://www.doitpoms.ac.uk/tlplib/ferroelectrics/index.php]
[18] V. P.-H. Hu, P.-C. Chiu, A. B. Sachid and C. Hu, "Negative capacitance enables FinFET and FDSOI scaling to 2 nm node," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 23.1.1-23.1.4.
[19] Z. C. Yuan et al., "Switching-Speed Limitations of Ferroelectric Negative-Capacitance FETs," in IEEE Transactions on Electron Devices, vol. 63, no. 10, pp. 4046-4052, Oct. 2016.
[20] K. S. Li et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," 2015 IEEE International Electron Devices Meeting, 2015, pp. 22.6.1-22.6.4.
[21] M. H. Lee et al., "Prospects for ferroelectric HfZrOx FETs with experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, switch-off <0.2V, and hysteresis-free strategies," 2015 IEEE International Electron Devices Meeting, 2015, pp. 22.5.1-22.5.4.
[22] S. Barraud et al., "Performance and design considerations for gate-all-around stacked-NanoWires FETs," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 29.2.1-29.2.4.
[23] P.-C. Chiu and V. P.-H. Hu, "Analysis of Negative Capacitance UTB SOI MOSFETs considering Line-Edge Roughness and Work Function Variation," 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, 2018, pp. 13-15.
[24] J. P. Duarte et al., "Compact models of negative-capacitance FinFETs: Lumped and distributed charge models," 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 30.5.1-30.5.4.
[25] Sanghoon Lee, Heung-Jae Cho, Younghwan Son, D. S. Lee and H. Shin, "Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, 2009, pp. 1-4.
[26] T. Nagumo, K. Takeuchi, T. Hase and Y. Hayashi, "Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps," 2010 International Electron Devices Meeting, San Francisco, CA, 2010, pp. 28.3.1-28.3.4.
[27] N. Tega et al., "Increasing threshold voltage variation due to random telegraph noise in FETs as gate lengths scale to 20 nm," 2009 Symposium on VLSI Technology, Honolulu, HI, 2006, pp. 50-51.
[28] Y. F. Lim et al., "Random Telegraph Signal Noise in Gate-All-Around Si-FinFET With Ultranarrow Body," in IEEE Electron Device Letters, vol. 27, no. 9, pp. 765-768, Sept. 2006.
[29] C. Hsu, C. Pan and A. Naeemi, "Performance Analysis and Enhancement of Negative Capacitance Logic Devices Based on Internally Resistive Ferroelectrics," in IEEE Electron Device Letters, vol. 39, no. 5, pp. 765-768, May 2018.
[30] S. K. Samal, S. Khandelwal, A. I. Khan, S. Salahuddin, C. Hu and S. K. Lim, "Full chip power benefits with negative capacitance FETs," 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, 2017, pp. 1-6.
[31] M. Fan, V. P. Hu, Y. Chen, P. Su and C. Chuang, "Analysis of Single-Trap-Induced Random Telegraph Noise on FinFET Devices, 6T SRAM Cell, and Logic Circuits," in IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2227-2234, Aug. 2012.
[32] V. P.-H. Hu, P.-C. Chiu and Y.-C. Lu, "Impact of Work Function Variation, Line-Edge Roughness, and Ferroelectric Properties Variation on Negative Capacitance FETs," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 295-302, 2019.
[33] H. Lee and P. Su, "Suppressed Fin-LER Induced Variability in Negative Capacitance FinFETs," in IEEE Electron Device Letters, vol. 38, no. 10, pp. 1492-1495, Oct. 2017.
[34] Z.-T. Lin and V. P.-H. Hu, "Performance Analysis of Gate-All-Around Negative Capacitance Stacked Nanowire and Negative Capacitance Nanosheet FETs," Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials (SSDM), Tokyo, Japan, September 2018.
[35] Z.-T. Lin and V. P.-H. Hu, "Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization," 2019 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 2019, pp. 1-2.
[36] Suman Datta, non-ECS seminar in Purdue Univ., 2015
指導教授 胡璧合 審核日期 2019-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明