博碩士論文 106521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.224.68.121
姓名 趙皓貽(Hao-Yi Zhao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 同調光達應用的高速和大動態範圍的累增崩潰光二極體
(High-Speed Avalanche Photodiodes with Wide Dynamic Range Performances for Coherent Lidar Application)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們展示了一種新穎的正面收光累增崩潰光二極體(APD),該元
件高速和大動態範圍的表現,使其應用於同調光達(Coherent Lidar)擁有出色的性能。藉著局部p型摻雜的In0.53Ga0.47As吸收層和薄的
In0.52Al0.48As累增層(90nm)的優點,在高達8mA的飽和輸出電流下,APD展現出高的光電頻寬(16GHz)和響應度(3.1A/W),且該元件低過量噪聲(k=0.14)特性確保了其大動態範圍性能。此外,該APD元件的
非線性特性與典型的P-I-N光電二極體完全不同,後者的光電頻寬總
是在飽和輸出時顯著降低,我們展示的APD隨著操作偏壓的上升,可
以抑制光電頻寬在飽和輸出光電流下的劣化,並保持高速操作。作為
光達接收端,需要同時處理來自目標微弱的反射光與光學局部震盪器
強烈的訊號,因此APD優秀的動態/靜態表現,為進一步提高同調光
達接收器的性能開闢了新的途徑。
摘要(英) In this work, we demonstrate a novel top-illuminated avalanche photodiode (APD) with high-speed and wide dynamic range performance for coherent lidar applications. By taking advantag of a partially depleted
p-type In0.53Ga0.47As absorbing layer and a thin In0.52Al0.48As multiplication layer (90 nm), the demonstrated APDs exhibit a wideoptical-to-electrical bandwidth (16 GHz) and high responsivity (>3.1
A/W) near the saturation output current which is as high as >8 mA.Furthermore, the measured low excess noise (k=0.15) characteristics of this device ensure its wide dynamic range performance. In addition, it should be noted that the measured nonlinear behaviors of these APDs are quite different from those of typical fast p-i-n photodiodes (PDs), which always show serious degradation in their O-E bandwidths at their saturation output. On the other hand, the measured bias dependent 3-dB O-E bandwidth of the demonstrated APDs can be pinned at 16 GHz without any degradation at around the saturation current output. As the receiving end of lidar, which needs simultaneous processing of weak light reflections from the object and a strong optical local-oscillator (LO) signal. The APDs demonstrated excellent dynamic/static performance,opening up new ways to further improve the performance of coherent lidar receivers.
關鍵字(中) ★ 累增崩潰光二極體
★ 同調光達
★ 低過量噪聲
★ 飽和輸出電流
關鍵字(英) ★ APD
★ avalanche photodiode
★ Coherent Lidar
★ low excess noise
★ saturation output current
論文目次 目錄
Abstract.............................................. i
摘要 ................................................. ii
致謝 ................................................ iii
目錄 .................................................. v
圖目錄 .............................................. vii
表目錄 ................................................ x
第一章 序論............................................. 1
§1-1 LIDAR 系統 ....................................... 1
§1-2 網路時代與資料中心 ................................ 2
§1-3 高功率電致吸收調變雷射(EML)和高敏感光偵測器 ......... 3
§1-4 傳統的累增崩潰光二極體 ............................. 6
§1-5 分離式吸收、電荷、累增之累增崩潰光二極體 ............ 8
§1-6 InP based SACM 累增崩潰光二極體 ................... 9
§1-7 10 GBit/sec InAlAs based SACM 累增崩潰光二極體 ... 11
§1-8 25 GBit/sec InAlAs based SACM 累增崩潰光二極體 ... 14
§1-9 論文動機與架構 ................................... 17
第二章 累增崩潰光二極體之設計與製作 ..................... 18
§2-1 累增崩潰光二極體之設計與模擬 ...................... 18
§2-2 累增崩潰光二極體之製程 ............................ 21
第三章 累增崩潰光檢測器之量測與結果討論 ................. 33
§3-1 量測系統之架設 ................................... 33
§3-2 正面收光 25μm APD 量測結果 ....................... 35
§3-3 元件A 微縮化量測結果 ............................. 47
§3-4 元件B 微縮化商業封裝量測結果 ...................... 50
第四章 結論 ........................................... 51
§4-1 結論 ............................................ 51
參考文獻 .............................................. 52
附錄 ................................................. 57
參考文獻 [1] http://www.ieee802.org/3/ba/
[2] Juniper Network:100GBASE-ER4
Spec_https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/transceiver-m-mx-t-series-100gebase-optical-specifications.html#jd0e267
[3] FOSCO: Loss spectrum of a single mode fiber_https://www.fiberoptics4sale.com/blogs/archiveposts/95052294-optical-fi ber-attenuation
[4] T. Fujisawa, M. Arai, N. Fujiwara, W. Kobayashi, T. Tadokoro, K. Tsuzuki, Y.Akage, R. Iga, T. Yamanaka, and F. Kano, “First 40-km SMF Transmission for 100-Gbit/s Ethernet System Based on 25-Gbit/s 1.3-μm Electroabsorption Modulator Integrated with a DFB Laser Module,” Proc. ECOC 2009, Vienna,Austria, Sep., 2009, pp. 8.6.4.
[5] S. Kanazawa, T. Fujisawa, K. Takahata, T. Ito, Y. Ueda, W. Kobayashi, H. Ishii,and H. Sanjoh, “Flip-Chip Interconnection Lumped-Electrode EADFB Laser for 100-Gb/s/λ Transmitter,” IEEE Photon. Tech. Lett., vol. 27, no. 16, pp.1699-1701, Aug., 2015.
[6]http://www.ieee802.org/3/av/public/2006_11/3av_0611_lee_1.pdf
[7] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, 2001.
[8] George M. Williams and Andrew S. Huntington, “Probabilistic analysis of Linear Mode vs Geiger Mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE, vol. 6220, no. 622008, 2006.
[9] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J.Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350,2002.
[10] H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEE Electron. Lett., vol. 39, no. 16, pp.1199-1201, Aug. 2003.
[11] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8,pp. 1160-1162, Aug. 2002.
[12] M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, “High-performance,manufacturable avalanche photodiodes for 10 Gb/s optical receivers,” Proc.OFC 2000, Baltimore, MD, USA, vol. 4, pp. 324-326, 2000.
[13] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8,pp. 1160-1162, Aug. 2002.
[14] H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APD’s,” J. Lightw. Technol., vol. 6, no. 10, pp.1496-1501, Oct. 1988.
[15] Mohammad A. Saleh, Majeed M. Hayat, Paul P. Sotirelis, Archie L. Holmes, Joe
C. Campbell, Bahaa E. A. Saleh and Malvin Carl Teich ”Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes,” IEEE Transactions
on Electron Devices, vol. 48, pp. 2722-2731, DEC 2001.
[16] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li,J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel.Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
[17] E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda,and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.
[18] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep., 2006.
[19] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki,“Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability,” IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.
[20] http://www.albisopto.com/wp content/uploads/2017/03/ProductBrief_APD16L_A4.pdf
[21] M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, and H. Matsuzaki,“Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond,” IEEE/OSA Journal of Lightwave Technology, vol. 33, no.
5, pp. 984-990, March, 2015.
[22] X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. A. Tulchinsky, and K. J.Williams, “High-Saturation-Current InP-InGaAs Photodiode With Partially Depleted Absorber” IEEE Photon. Technol. Lett., vol. 15, pp. 1276-1278, Sep.,2003.880, April, 2005.
[23] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R.Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55 μm Wavelength” IEEE
Photon. Tech. Lett vol. 17, pp.878-880, April, 2005.
[24] Y. L. Goh, J. S. Ng, C. H. Tan, W. K. Ng, and J. P. R. David, “Excess Noise Measurement in In0.53Ga0.47As,” IEEE Photon. Tech. Lett., vol. 17, pp.2412-2414, Nov., 2005.
[25] M. Nada, S. Kanazawa, H. Yamazaki, Y. Nakanishi, W. Kobayashi, Y. Doi, T. Ohyama, T. Ohno, K. Takahata, T. Hashimoto, and H. Matsuzaki,“High-linearity Avalanche Photodiode for 40-km Transmission with 28-Gbaud
PAM-4,” Proc. OFC 2015, Los Angeles, CA, USA, March, 2015, pp. M3C.2
[26] M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M.Achouche, “240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes,” IEEE Photon. Tech. Lett., vol. 22, no. 18, pp.1373-1375, Sep., 2010.
[27] Jin-Wei Shi and C.-W. Liu, "Design and Analysis of
Separate-Absorption-Transport-Charge-Multiplication
Traveling-Wave Avalanche Photodetectors" IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[28] Jin-Wei Shi, Kai-Lun Chi, Chi-Yu Li, and Jhih-Min Wun “Dynamic Analysis of High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical Interconnect across a Wide Optical Window (0.85 to 1.55 μm),” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 4, pp. 921-927, Feb., 2015.
[29] M. Nada, Y. Muramoto, H. Yokoyama and H. Matsuzaki, “High-Speed High-Power-Tolerant Avalanche Photodiode for 100-Gb/s Applications,” Proc.IEEE Photonic Society Meeting, San Diego, CA, USA, paper TuA1.4, 2014.
[30] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans.Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[31] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang San, and Ci-Liang Pan, “Separated Transport Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol.17, pp. 1722-1724, Aug., 2005.
[32] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li,J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N.Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel.Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
[33] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006.
[34] Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S.Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi, “The enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers,” Optics Express, vol. 27,no. 11, pp. 15495-15504, May, 2019.
[35] W. Sun, X. Zheng, Z. Lu and J. C. Campbell, "Monte Carlo Simulation of InAlAs/InAlGaAs Tandem Avalanche Photodiodes," in IEEE Journal of Quantum Electronics, vol. 48, no. 4, pp. 528-532, April, 2012.
[36] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A.Saleh, and M. C. Teich, “Impact-Ionization and Noise Characteristics of Thin III-V Avalanche Photodiodes,” IEEE Trans. Electron Devices, vol. 48, pp.2722-2731, Dec., 2001.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明