博碩士論文 106521017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.116.12.121
姓名 鄭辰龍(Chen-Lung Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在高溫操作下具有超高速表現的850nm 和940nm 波段之垂直共振腔面射型雷射
(Ultrafast 850nm and 940nm Vertical-Cavity Surface-Emitting Lasers under High-Temperature Operations)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文當中會探討850nm 波段及940nm 波段的垂直共振腔面射型雷射(VCSEL)的元件設計。此次實驗中的940nm VCSEL 元件方面,實現了最快紀錄的O-E 3dB 頻寬, 能夠在室溫及高溫85℃ 操作環境下出
40GHz/32GHz 的小訊號頻寬。同時我們也研究了3μm、6μm、8μm 三種不同的氧化孔徑下,在室溫的特性下也分別能達到:40GHz、38GHz、
33GHz 的小訊號頻寬。透過S11 S21 參數所建立的等效電路模型分析出不同尺寸氧化孔徑所展現出的本質頻寬,在3μm氧化孔徑的元件可以得到46.3GHz 的本質頻寬,這數字能夠非常接近我們所量測的3dB 頻寬(40GHz),有效證明我們透過了鋅擴散及氧化掏離技術所製作出的元件能夠釋放出元件的本質頻寬。透過通訊設備的量測傳輸,可以實現在1 公尺距離下使用OM5 光纖實現常溫60Gbit/sec 無誤碼(BER<1 × 10−12) ,且可以在常溫及高溫85℃的操作環境下維持50Gbps(BER<1 × 10−7)的眼圖超過100 公尺傳輸品質維持不變。
850nm 波段方面,我們採用另一種消逝波(Anti waveguiding) VCSEL 的磊晶結構,透過這種特別的共振腔設計,使的元件在氧化區域的高階模態能夠有效抑制,進而有效提升垂直方向的光場強度,讓元件的模態能夠趨近單模。實驗結果3dB 頻響可以達到30GHz,且傳輸方面在常溫傳輸量可以達到60Gbps 的Back to back(B2B)傳輸。
摘要(英) In this work, we demonstrate 940 nm VCSELs with state-of-the-art dynamic performance. Record-high O-E bandwidths can be achieved under RT (40 GHz) and 85℃ (32 GHz) operation. The maximum intrinsic -3dB E-O bandwidths of these devices are obtained through the use of device modeling techniques and can be as high as 46.3 GHz. This number is close to the measured -3dB E-O bandwidth
(40 GHz) and clearly indicates that the Zn-diffusion and oxide-relief techniques used in our VCSELs can effectively relax their RC-limited bandwidth. By using
such devices as transmitters, 60 Gbit/sec error-free (BER < 1×10-12) back to back(B2B)transmission and invariant 50 Gbps transmission performance from RT to 85℃ over 100 meter OM5 fibers can be achieved.
In the 850nm VCSEL case, we used advanced design concepts of the VCSELs,addressing both longitudinal and transverse optical modes. Applying an epitaxial structure having an anti–waveguiding cavity in the vertical direction leads to a strong suppression of parasitic in–plane optical modes, which supports a high modulation bandwidth. Using thin aperture layers located in the nodes of the longitudinal field of the lasing mode results in a strong suppression of high–order transverse modes and in single transverse mode lasing. We achieved the bandwidth reach to 30GHz, and B2B transmission at 60Gbps on room temperature.
關鍵字(中) ★ VCSEL
★ 超高速垂直共振腔面射型雷射
★ 高速垂直共振腔面射型雷射
★ 850nm垂直共振腔面射型雷射
★ 940nm垂直共振腔面射型雷射
關鍵字(英) ★ VCSEL
★ ultra high speed
★ 850nm
★ 940nm
論文目次 目錄
中文摘要 ………………………………………………………………………………… i
英文摘要 ………………………………………………………………………………… ii
誌謝 ……………………………………………………………………………………… iii
目錄 ……………………………………………………………………………………… iv
圖目錄 …………………………………………………………………………………… v
表目錄 …………………………………………………………………………………… vi
第一章 序論.............................. 1
簡介 .................................... 1
SWDM .................................... 5
垂直共振腔面射型雷射 簡介 ................. 8
面射型雷射的電流侷限.......................10
氧化層結構 .............................. 12
第二章 實驗理論 ....................... ..15
2-1 940nm 波段 VCSEL 晶片磊晶結構 ....... 15
2-2 850nm 波段 VCSEL 晶片設計結構 ....... 19
2-3 VCSEL 濕氧化原理.................... 22
2-4 高速VCSEL 製作...................... 25
2-5 濕氧化系統 .........................29
2-6 IR CCD 系統 .......................31
第三章 實驗 ............................32
3-1 鋅擴散 (Zn diffusion) ..............32
3-2 水氧氧化 ...........................35
3-3 製作電極(P_Metal 和N_Metal) ....... 39
3-4 Isolation and Passivation ........ 41
3-5 平坦化 .............................43
3-6 PAD 金屬 ...........................44
第四章 量測結果與討論 ................... 45
4-1 量測系統介紹 ........................45
4-1-1 電流對電壓(I-V)的量測 .............45
4-1-2 光功率對電流之量測 ................46
4-1-3 頻寬(Bandwidth)之量測系統 ........ 46
4-1-4 頻譜(Spectrum)之量測系統 ......... 47
4-2 940nm 波段 VCSEL 量測 .............. 48
4-2-1 VCSEL 元件結構圖...................48
viii
4-2-2 電流對電壓(I-V)曲線及光功率對電流(L-I)曲線 ..... 49
4-2-3 Smith Chart 微波反射係數 S11 ................. 52
4-3 E-O 頻寬(Band width)及頻譜(Spectrum) ............53
4-4 本質頻寬 (Intrinsic Frequency Response) .........56
4-5 940nm VCSEL 傳輸量測結果 ....................... 59
4-6 850nm 波段 VCSEL 量測結果 ...................... 62
第五章 結論與未來討論.................................65
Reference ......................................... 66
參考文獻 [1] Daniel M. Kuchta, IBM T. J. Watson Research Center, “High-Capacity VCSEL Links” OFC 2017, Mar. 2017.
[2] S. Nakagawa, D. Kuchta, C. Schow, R John, A.Larry .Coldren,Yu-Chia Chang,“1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3,
San Diego, CA, Feb., 2008.
[3] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum
Electronics, vol. 33, no. 10, pp. 1810-1824, Oct.,1997.
[4] K. D. Choquette and H.Q.Hou, “Vertical-cavity surface emitting laser:Moving from research to manufacturing,”Proc. IEEE, vol. 85, no. 11,pp. 1730-1739,
Nov., 1997.
[5] Y-C chang, L. A. Coldrem “Effocoent,High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE Journal of Quantum Electronics,vol. 15, no.3, pp.704-715, May., 2009.
[6] Y. Mohammad “Optimizing Optical output power of single-mode vcsels usingmultiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 19, no. 4,July., 2013.
[7] 顏志成,“具有超低耗能,傳輸資料比值在850nm 波段超高速(40Gbit/s)面射型雷射,” 國立中央大學研究所論文(民國101)
[8] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE Journal of Quantum Electronic,vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[9] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp.1628-1629, Sept., 1990.
[10] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang,“Low threshold room-temperature operation of a GaAs single quantum well
mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp.414-421, Nov., 1991.
[11] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,“Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp.
1780-1782, Apr., 1991.
[12] Kai-Lun Chi, Jia-Liang Yen, Jhih-Min Wun, Jia-Wei Jiang, I-Cheng Lu,Jason (Jyehong) Chen, Ying-Jay Yang, and Jin-Wei Shi, “Strong Wavelength Detuning of 850 nm Vertical-Cavity Surface-Emitting Lasers for High-Speed (>40 Gbit/sec) and Low-Energy Consumption Operation,”
IEEE J. of Sel. Topics in Quantum Electronics, vol. 21, no. 6, pp. 1701510,Nov ,/Dec., 2015.
[13] Jin-Wei Shi, Jhih-Cheng Yan, Jhih-Min Wun, Jason (Jyehong) Chen, Ying-Jay Yang, “Oxide-Relief and Zn-Diffusion 850 nm Vertical-Cavity Surface-
Emitting Lasers with Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/sec Operations” IEEE J. of Sel. Topics in Quantum Electronics, vol. 19,pp. 7900208, March/April, 2013.
[14] N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. Ledentsov Jr., J.-R. Kropp,M.Agustin, Ł. Chorchos, G.Stepniak, J. P. Turkiewicz,J.-w. Shi,” Anti–
waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept toadvances in high–speed data transmission” Optic EXPRESS,vol. 26,no1,8 jan,2018
[15] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec .,1965.
[16] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, p. 5213, 1992.
[17] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull,“Advances in Selective Wet Oxidation of AlGaAs Alloys,”
IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, June,1997.
[18] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov.,1995.
[19] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett.,vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[20] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J.Drummond, and R. Hull,“Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937 ,1996.
[21] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12,2007.
[22] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[23] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member,IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol.
16, no. 2, pp. 368-370, Feb., 2004.
[24] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson,“Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604,
Aug., 2005.
[25] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh ,T.Baba,“High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. , 2004.
[26] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, June, 1996.
[27] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, 1995.
[28] K. D. Choquette, K. L. Lear, R. P. Schneider,Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys.Lett., vol. 66, pp.3413-3415, 1995.
[29] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12,
2007.
[30] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K.D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett., vol. 25, no.18, pp. 1823–1825, 2013.
[31] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavitysurface-
emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan., 2003.
[32] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp.927-929, Sep., 2001.
[33] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,”
IEEE Photonics. Tech. Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[34] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg,“Temperature-Stable 980-nm VCSELs for 35-Gb/s Operation at 85 °C with 139-fJ/bit Dissipated Heat,” IEEE Photon. Technol. Lett., vol. 26, pp. 2349-
2352, Dec., 2014.
[35] Jin-Wei Shi, Zhi-Rui Wei, Kai-Lun Chi, Jia-Wei Jiang, Jhih-Min Wun, ICheng Lu, Jason (Jyehong) Chen, and Ying-Jay Yang, “Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 nm
for Short to Medium Reach (2 km) Optical Interconnects,” IEEE/OSA Journal of Lightwave Technology, vol. 31, pp. 4037-4044, Dec., 2013.
[36] Zuhaib Khan, Jia-Liang Yen, Chen-Lung Cheng, Kai-Lun Chi, and Jin-Wei Shi, “Enhancing the Static and Dynamic Performance of High-Speed VCSELs by Zn-Diffused Shallow Surface Relief Apertures,” IEEE J. of Quantum Electronics, vol. 54, pp. 2400706, Oct., 2018.
[37] M. C. Tatham, I. F. Lealman, Colin P. Seltzer, L. D. Westbrook, and D. M.Cooper, “Resonance frequency, damping, and differential gain in 1.5 m multiple quantum-well lasers,” IEEE J. Quantum Electron., vol. 28, pp. 408-414, 1992.
[38] H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome,and M. Tsuji, “Highly Reliable High-Speed 1.1-μm-Range VCSELs with InGaAs/GaAsP-MQWs, IEEE J. Quantum Electron., vol. 46, pp. 890-897,June, 2010.
[39] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi,K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A.
Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs for “Green” Optical Interconnection,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1614–1619, Nov./Dec. 2011.
[40] P. Westbergh, J. S. Gustavsson, B. Kögel, Å.Haglund, and A. Larsson,“Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J.of Sel. Topics in Quantum Electronics, vol. 17, pp. 1603-1613, Nov., /Dec.,2011.
[41] G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs,” IEEE Photon.Technol. Lett., vol. 28, pp. 2327-2330, Nov., 2016.
[42] S. T. M. Fryslie, M. P. T. Siriani, D. F. Siriani, M. T. Johnson and K. D.Choquette, “37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett., vol.27, no. 4, pp. 415-418, Feb., 2015.
[43] X. Gu, M. Nakahama, A. Matsutaniand F. Koyama, “Over 30 GHz modulation of 850 nm transverse coupled cavity vertical-cavity surfaceemitting laser,” 2015 European Conference on Optical Communication (ECOC), Valencia, 2015, pp. 1-3.
[44] Agustin, M., N. Ledentsov, J-R. Kropp, V. A. Shchukin, V. P. Kalosha, KL.Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov. "50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range." In Vertical-Cavity Surface-Emitting Lasers XXII, vol. 10552, p. 1055202. International Society for Optics and Photonics, 2018.
[45] R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J.-R. Kropp, N. Ledentsov Jr.,V.A. Shchukin, N. N. Ledentsov, R. Henker, I. Tafur Monroy, J. J. Vegas
Olmos, and J. P. Turkiewicz, “107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber,” Postdeadline Papers OFC 2016, Anaheim, CA, USA, March, 2016, Th5B.5.
[46] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C.W. Baks, P. Westbergh, J.S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Photon. Technol.
Lett., vol. 27, pp.577-580, March, 2015.
[47] E. Haglund, P. Westbergh, J.S. Gustavsson, E.P. Haglund, A. Larsson, M.Geen, and A. Joel, “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s,” Electron. Lett., vol. 51, no. 14, pp. 1096-1098, July, 2015.
[48] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P.Westbergh, J.S. Gustavsson, and A. Larsson, “A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90 °C,” IEEE/OSA
Journal of Lightwave Technology, vol. 33, no. 4, pp. 802-810, Feb., 2015.
[49] Jin-Wei Shi, Jhih-Cheng Yan, Jhih-Min Wun, Jason (Jyehong) Chen, Ying-Jay Yang, “Oxide-Relief and Zn-Diffusion 850 nm Vertical-Cavity Surface-Emitting Lasers with Extremely Low Energy-to-Data-Rate Ratios for 40
Gbit/sec Operations” IEEE J. of Sel. Topics in Quantum Electronics, vol. 19,pp. 7900208, March/April, 2013.
[50] M. Liu, C. Y. Wang, M. Feng and N. Holonyak, Jr., “850 nm Oxide-Confined VCSELs with 50 Gb/s Error-Free Transmission Operating up to 85 °C,” in Technical Digest of Conference on Lasers and Electro-Optics, paper SF1L.6,
San Jose, CA, USA, May 2016.
[51] N. Ledentsov Jr., M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha,K. L. Chi, Z. Khan, J.-W. Shi, N. N. Ledentsov “Temperature stable oxideconfined
850 nm VCSELs operating at bit rates up to 25 Gbit/s at 150°C,”Proc. SPIE, Vertic-Cavity Surface Emitting LaserXXII, pp.10552-24,Feb.,2018.
[52] Kai-Lun Chi, Zheng-Ting Xie, M. Agustin, J.-R. Kropp, N. N. Ledentsov, Kuo-Feng Tseng, Ling-Gang Yang, and Jin-Wei Shi, “Zn-Diffusion/Oxide-Relief 940 nm VCSELs with Excellent High-Temperature Performance for
50 Gbit/sec Transmission,” Proc. OFC 2018, San Diego, CA, USA, March,2018, pp. W1I.5.
[53] Chen-Lung Cheng, N. Ledentsov Jr., M. Agustin, J.-R. Kropp, N. N.Ledentsov, Z. Khan, and Jin-Wei Shi, “Ultra-Fast Zn-Diffusion/Oxide-Relief 940 nm VCSELs,” to be published in Proc. OFC 2019, San Diego, CA, USA,March, 2019, pp. W3A.2.
[54] Jia-Liang Yen, Xin-Nan Chen, Kai-Lun Chi, Jason Chen, and Jin-Wei Shi,“850 nm Vertical-Cavity Surface-Emitting LaserArrays with Enhanced High-Speed TransmissionPerformance Over a Standard Multimode Fiber,”
IEEE/OSA Journal of Lightwave Technology, vol. 35, pp. 3242-3249, Aug.,2017.
[55] Kai-Lun Chi, Jia-Liang Yen, Jhih-Min Wun, Jia-Wei Jiang, I-Cheng Lu,Jason Chen,Ying-Jay Yang, and Jin-Wei Shi, “Strong Wavelength Detuning of 850 nm Vertical-Cavity Surface-Emitting Lasers for High-Speed (>40
Gbit/s) and Low-Energy Consumption Operation” IEEE Journal of selected topics in quantum electrum electronics. vol.21.no.6 November /December 2015.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明