博碩士論文 106521019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.216.32.116
姓名 鄭哲安(Zhe-An Zheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鐵電場效電晶體記憶體之穩定度及性能分析
(Stability and Performance Analysis of Ferroelectric FET Based Memory)
相關論文
★ 超薄層異質通道場效電晶體及單石三維靜態隨機存取記憶體考慮負交疊設計之研究★ 負電容場效電晶體之微縮與變異度分析
★ 利用線穿隧及非均勻通道厚度提升三五族 穿隧場效電晶體性能之研究★ 分析負電容堆疊式環繞閘極場效電晶體之特性及負電容鰭式場效電晶體之隨機電報雜訊
★ 提升負電容穿隧場效電晶體效能之最佳化設計★ 應用於記憶邏輯運算之非揮發性鐵電場效電晶體記憶體
★ 使用分離式閘極之高能量效率非揮發性鐵電場效電晶體記憶體★ 研究製程變異度對負電容場效電晶體與電路的類比性能之影響
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作★ 分析與設計低電壓操作之非揮發性鐵電場效電晶體記憶體
★ 高密度 4T 與 6T 低溫鰭式場效電晶體靜態隨機存取記憶體★ 積層型三維邏輯電路之性能分析
★ 無接面鐵電場效電晶體與量測模式對增強極化之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高效能與低功耗電晶體元件在記憶體電路上扮演重要的腳色,然而為了降低功耗,須降低其元件操作電壓(operating voltage),使其導通電流(Ion)會隨著低電壓操作而下降,進而使電路穩定度下降,因此具有更低次臨界擺幅(subthreshold swing)、高導通電流及具有遲滯現象(hysteresis)特性的鐵電場效電晶體(Ferroelectric Field Effect Transistor, FEFET),為提升記憶體穩定度的新興元件之一。
本論文主要探討兩種不同形式之記憶體,第一種為利用Landau-Khalatnikov方程式結合Verilog-A模型與TCAD,分析在不同操作電壓下之鐵電鰭式場效電晶體靜態隨機存取記憶體單元(FE-FinFET SRAM cell),第二種為利用Verilog-A模型與TCAD,分析單電晶體鐵電場效電晶體記憶體(1T-FEFET)之記憶體視窗(Memory window),及元件參數變異對記憶體視窗的影響。在FE-FinFET SRAM cell之研究中,我們利用Table-lookup的方式模擬鐵電鰭式場效電晶體,並利用HSPICE進行靜態隨機存取記憶體電路分析,研究顯示在次臨界區(Subthreshold region)操作時,與FinFET SRAM cell相比,FE-FinFET SRAM cell有較佳的穩定度,其輔助電路對穩定度的改善也較顯著,同時在感測放大電路上具有更快的感測時間(Sensing time)。在穩定度分析中,由於鐵電鰭式場效電晶體獨特的負差動電阻特性(Negative differential resistance ;NDR)、更好的次臨界擺幅與導通電流,使FE-FinFET SRAM cell能夠解決在次臨界區操作時,讀取穩定度與寫入穩定度設計上的衝突,研究結果顯示跟FinFET SRAM相比,FE-FinFET SRAM cell在次臨界區操作時,同時提升了讀取穩定度與寫入穩定度。在靜態隨機存取記憶體性能分析部分,我們分析FE-FinFET SRAM cell之讀取存取時間(Cell read access time)與寫入時間(Time-to-write),由於鐵電鰭式場效電晶體之導通電流較一般傳統電晶體大,因此在超臨界區(Superthreshold region)時,FE-FinFET SRAM cell讀取存取時間與寫入時間皆較FinFET SRAM cell快,但因鐵電鰭式場效電晶體之臨界電壓也較大,因此在次臨界區操作時,鐵電鰭式場效電晶體讀取存取時間與寫入時間皆較慢。在靜態隨機存取記憶體輔助電路與感測放大電路部分,由於在次臨界區有更顯著的負差動電阻特性,使得鐵電鰭式場效電晶體可同時改善讀取穩定度與寫入穩定度,同時鐵電鰭式場效電晶體不論在超臨界區或次臨界區,皆能夠比傳統電晶體有更快的感測時間。
最後,我們分析單電晶體(1T)非揮發性鐵電場效電晶體記憶體的穩定度,透過電容阻抗模型與電晶體臨界電壓差之差異,我們分析不同的結構與材料參數對1T鐵電場效電晶體記憶體視窗(Memory window)之影響,調整鐵電層面積能夠更有效的優化記憶體視窗特性,增加記憶體耐久度。
摘要(英) High performance and low power consumption devices plays an important role in the memory circuit. However, the operating voltage of the device must be reduced for low power operation. As the operating voltage decreases, the on state current decreases, which degrades the stability of memory circuit. Therefore, ferroelectric FinFET (FE-FinFET) is one of the promising devices for low power applications due to its better subthreshold swing, high on-state current and non-volatile characteristics.
In this dissertation, we explore two different types of memory circuits. First one is that we analyze the FE-FinFET static random access memory cell (FE-FinFET SRAM cell) at different operating voltage by using both TCAD and Landau-Khalatnikov (L-K) equation based Verilog-A model. Second, we analyze the memory window of the 1T ferroelectric FET(1T-FEFET) based non-volatile memory considering the impact of device parameter variations. For the FE-FinFET SRAM cell, we establish the table lookup model to simulate the FE-FinFET and use HSPICE to simulate the FE-FinFET SRAM cell. We propose that FE-FinFET SRAM cell shows better stability at subthreshold operation and shorter sensing time in sensing amplifier circuit.
In stability analysis, due to negative differential resistance effect, better subthreshold swing and on-state current of FE-FinFET, FE-FinFET SRAM cell resolves the conflict between read and write operation at subthreshold region.
In transient analysis of FE-FinFET SRAM cell, we analyze the cell read access time and time-to-write. Owing to the larger on-state current, FE-FinFET SRAM cell exhibits shorter cell read access time and time-to-write in superthreshold region. Due to larger threshold voltage, FE-FinFET SRAM cell shows slightly larger cell read access time and time-to-write in subthreshold region. With the strong negative differential resistance (NDR) effect in the subthreshold region, the assist circuit of FE-FinFET can improve the read and write stability simultaneously. The sensing amplifier circuit of FE-FinFET shows shorter sensing time than that of the conventional FinFET
We analyze the 1T-FEFET memory. According to the capacitor impedance model and the current of the transistor, we show the influence of the different device parameter on the memory window of 1T-FEFET. Adjusting the area of ferroelectric layer shows the most significant impact on memory window. Therefore, adjusting the area ratio of ferroelectric layer to the interfacial layer can be used to improve the memory window and endurance.
關鍵字(中) ★ 鐵電材料
★ 鐵電鰭式場效電晶體
★ 靜態隨機存取記憶體
★ 負差動電阻
★ 靜態雜訊邊限
★ 輔助電路
★ 感測放大電路
★ 記憶體視窗
關鍵字(英) ★ ferroelectric
★ ferroelectric FinFET (FE-FinFET)
★ static random access memory
★ negative differential resistance
★ static noise margin
★ assist circuit
★ sensing amplifier
★ memory window
論文目次 摘要 I
Abstract III
致謝 V
圖目錄 IX
表目錄 XIII
第一章 導論 1
1.1 背景與相關研究 1
1.1.1 鐵電材料與鐵電電晶體 2
1.1.2 負汲極引發位能障下降效應與負微分電阻特性 6
1.1.3 鐵電材料之非揮發性 9
1.2 研究動機 10
1.3 論文架構 11
第二章 鐵電鰭式場效電晶體靜態隨機存取記憶體單元分析 12
2.1 前言 12
2.2 元件結構與模擬參數 14
2.3 鐵電鰭式場效電晶體靜態隨機存取記憶體單元穩定度分析 16
2.3.1 讀取靜態雜訊邊限 17
2.3.2 寫入靜態雜訊邊限 21
2.3.3 保持靜態雜訊邊限 28
2.4 鐵電鰭式場效電晶體靜態隨機存取記憶體單元性能分析 32
2.4.1 單元讀取存取時間分析 34
2.4.2 單元寫入時間分析 36
2.4.3 漏電流分析 37
2.5 鐵電電晶體靜態隨機存取記憶體單元周邊電路 39
2.5.1 分析讀取與寫入輔助電路之影響 39
2.5.2 鐵電電晶體感測放大電路 43
2.6 結論 48
第三章 單電晶體(1T)非揮發性鐵電場效電晶體記憶體記憶體視窗分析 49
3.1 前言 49
3.2 元件結構與模擬參數 50
3.3 元件結構與材料參數對記憶體視窗之電性分析 52
3.4 元件結構與材料參數對記憶體視窗之極化分析 56
3.5 結論 60
第四章 總結 62
參考文獻 65
參考文獻 [1] International Roadmap for Devices and Systems (IRDS), 2016. [https://irds.ieee.org/]
[2] J. Fousek, "Joseph Valasek and the discovery of ferroelectricity," Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, University Park, PA, USA, 1994, pp. 1-5.
[3] S. Salahuddin and S. Dattat, "Use of Negative Capacitance to ProvideVoltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, No. 2, pp. 405-410, 2008.
[4] V. P. Hu, P. Chiu, A. B. Sachid and C. Hu, "Negative capacitance enables FinFET and FDSOI scaling to 2 nm node," 2017 IEEE InternationalElectron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 23.1.1-23.1.4.
[5] M. Kobayashi and T. Hiramoto, "Device design guideline for steep slope ferroelectric FET using negative capacitance in sub-0.2V operation: Operation speed, material requirement and energy efficiency,"2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, 2015, pp. T212-T213.
[6] C. Lin, A. I. Khan, S. Salahuddin and C. Hu, "Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics," in IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 2197-2199, May 2016.
[7] P.-C. Chiu and V. P.-H. Hu, "Analysis of Negative Capacitance UTB SOI MOSFETs considering Line-Edge Roughness and Work Function Variation," 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, 2018, pp. 13-15.
[8] V. P.-H. Hu, P. Chiu and Y. Lu, "Impact of Work Function Variation, Line-Edge Roughness, and Ferroelectric Properties Variation on negative Capacitance FETs," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 295-302, 2019. doi: 10.1109/JEDS.2019.2897286
[9] T. Dutta, V. Georgiev, and A. Asenov, “Random discrete dopant induced variability in negative capacitance transistors,” 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), 2018. doi:10.1109/ULIS.2018.8354732
[10] M. Kobayashi, N. Ueyama, K. Jang and T. Hiramoto, "Experimental study on polarization-limited operation speed of negative capacitance FET with ferroelectric HfO2," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 12.3.1-12.3.4.
[11] Y. Li, K. Yao and G. S. Samudra, "Delay and Power Evaluation of Negative Capacitance Ferroelectric MOSFET Based on SPICE Model," in IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2403-2408, May 2017.
[12] C. Hu, S. Salahuddin, C. Lin and A. Khan, "0.2V adiabatic NC-FinFET with 0.6mA/μm IONand 0.1nA/μm IOFF," 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, 2015, pp. 39-40.
[13] P.-C. Chiu and V. P.-H. Hu, "Analysis of Negative Capacitance UTB SOI MOSFETs considering Line-Edge Roughness and Work Function Variation," 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, 2018, pp. 13-15.
[14] H. Agarwal, P. Kushwaha, J. P. Duarte, Y.-K. Lin, A. B. Sachid, M.-Y. Kao, Y.-L. Chang, S. Salahuddin, and C. Hu, “Engineering Negative Differential Resistance in NCFET for Analog Applications,” IEEE Transactions on Electron Deivces, vol. 65, no. 5, pp. 2033-2039, May 2018.
[15] G. Pahwa et al., “Analysis and compact modeling of negative capacitance transistor with high ON-current and negative output differential resistance—Part II: Model validation,” IEEE Trans. Electron Devices, vol. 63, no. 12, pp. 4986–4992, Dec. 2016.
[16] V. P.-H. Hu, Y.-C. Lu and P.-C. Chiu, “Investigation of Analog Performance for Negative Capacitance SOI MOSFET considering Line-Edge Roughness,”IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, US, June 2018.
[17] A. K. Saha, P. Sharma, I. Dabo, S. Datta and S. K. Gupta, "Ferroelectric transistor model based on self-consistent solution of 2D Poisson′s, nonequilibrium Green′s function and multi-domain Landau Khalatnikov equations," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 13.5.1-13.5.4.
[18] J. Seo, J. Lee and M. Shin, "Analysis of Drain-Induced Barrier Rising in Short-Channel Negative-Capacitance FETs and Its Applications," in IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1793-1798, April 2017.
[19] Hang-Ting Lue, Chien-Jang Wu and Tseung-Yuen Tseng, "Device modeling of ferroelectric memory field-effect transistor (FeMFET)," in IEEE Transactions on Electron Devices, vol. 49, no. 10, pp. 1790-1798, Oct. 2002.doi: 10.1109/TED.2002.803626
[20] Hang-Ting Lue, Chien-Jang Wu and Tseung-Yuen Tseng, "Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 1, pp. 5-14, Jan. 2003.doi: 10.1109/TUFFC.2003.1176521
[21] K. Ni et al., "SoC Logic Compatible Multi-Bit FeMFET Weight cell for Neuromorphic Applications," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2018, pp. 13.2.1-13.2.4.doi: 10.1109/IEDM.2018.8614496
[22] S. Migita, H. Ota and A. Toriumi, "Assessment of Steep-Subthreshold Swing Behaviors in Ferroelectric-Gate Field-Effect Transistors Caused by Positive Feedback of Polarization Reversal," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2018, pp. 31.4.1-31.4.4.doi: 10.1109/IEDM.2018.8614485
[23] Sentaurus TCAD, N-2017-9 Manual.
[24] V. P.-H. Hu, P. Chiu and Y. Lu, "Impact of Work Function Variation, Line-Edge Roughness, and Ferroelectric Properties Variation on Negative Capacitance FETs," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 295-302, 2019.
[25] V. P.-H. Hu, M.-L. Fan, P. Su and C.-T. Chuang, "Analysis of GeOI FinFET 6T SRAM cells with Variation-Tolerant WLUD Read-Assist and TVC Write-Assist," IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 1710-1715, June 2015.
[26] Y.-N. Chen, M.-L. Fan, V. P.-H. Hu, Pin Su and C.-T. Chuang, "Evaluation of Stability, Performance of Ultra-Low Voltage MOSFET, TFETand Mixed TFET-MOSFET SRAM cell with Write-Assist Circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 4, pp. 389-399, December 2014.
[27] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mistry, M. Bohr, “A 4.6GHz 162 Mb SRAM design in 22 nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry,” ISSCC, pp. 230-232, 2012.
[28] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mistry, M. Bohr, “A 4.6GHz 162 Mb SRAM design in 22 nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry,” ISSCC, pp. 230-232, 2012.
[29] J. Chang, Y.-H. Chen, H. Cheng, W.-M. Chan, H.-J. Liao, Q. Li, S. Chang, S. Natarajan, R. Lee, P.-W. Wang, S.-S. Lin, C.-C. Wu, K.-L. Cheng, M. Cao, and G. H. Chang, “A 20nm 112Mb SRAM in High-k Metal-Gate with Assist Circuitry for Low-Leakage and Low-Vmin Applications,” IEEE International Solid-State Circuits Conference (ISSCC), 2013.
[30] V. P.-H. Hu, M.-L. Fan, P. Su and C.-T. Chuang, "Threshold Voltage Design of UTB SOI SRAM with ImprovedStability/Variability for Ultra-Low Voltage near Subthreshold Operation," IEEE Transactions on Nanotechnology, vol. 12, no. 4, pp. 524-531, July 2013.
[31] V. P.-H. Hu, "Reliability-Tolerant Design for Ultra-Thin-Body GeOI 6T SRAM cell and Sense Amplifier," IEEE Journal of the Electron Devices Society, vol. 5, no. 2, pp. 107-111, March 2017.
[32] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "On the Physical Mechanism of Transient Negative Capacitance Effect in Deep Subthreshold Region," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 368-374, 2019.
[33] K. Ni, M. Jerry, J. A. Smith and S. Datta, "A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs," 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, 2018, pp. 131-132.
[34] U. Schroeder et al., "Impact of field cycling on HfO2based non-volatile memory devices," 2016 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, 2016, pp. 364-368.
[35] D. Zhou, Y. Guan, M. M. Vopson, J. Xu, H. Liang, F. Cao, X. Dong, J. Mueller, T. Schenk, and U. Schroeder, “Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films,” Acta Mater., vol. 99, pp. 240–246, Oct. 2015.
[36] Z.-A. Zheng, P.-C. Chiu and V. P.-H. Hu, “Stability Analysis of Subthreshold/Superthreshold Negative Capacitance FinFET SRAM Cell,” Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials (SSDM), Tokyo, Japan, September 2018.
[37] Z. Zheng and V. P.-H. Hu, "Improved Read Stability and Writability of Negative Capacitance FinFET SRAM Cell for Subthreshold Operation," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
[38] Suman Datta (2015), "Negative Capacitance Ferroelectric Transistors: A Promising Steep Slope Device Candidate?,"
https://nanohub.org/resources/23011.
指導教授 胡璧合 審核日期 2019-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明