博碩士論文 106521022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.134.81.206
姓名 余翊瑄(Yi-Hsuan Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討
★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體
★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文針對氮化鎵電晶體來建立一個簡單而準確的 SPICE 模型來提供給電路設計者在設計電路上面能根據所需的應用與需求來進行設計。首先針對氮化鎵電晶體的基本靜態與動態特性進行量測,其中包含電流−電壓、電容−電壓曲線及動態的雙脈衝測試電路之電壓與電流波型,同時會進行不同溫度下的電流−電壓量測曲線。以往使用分段的方程式來描述電晶體在截止、線性及飽和區來建立模型,然而使用此不分段方程式在
模擬時會導致出現不收斂以及模擬時間過長等問題,因此本論文透過不分段的行為模式方程式來描述氮化鎵電晶體的三個區域之特性,而為了使模型與量測數據能順利進行擬合,透過修正方程式及適當的參數調整的方法來使模型能與量測數據間能吻合,再利用雙脈衝測試電路進行元件在開關特性上的驗證,最終建立出完整的 SPICE 模型。

另一方面,氮化鎵功率元件的反向導通特性對於電路應用方面來說也是一個很重要的議題,因為在元件關閉時需要提供一個電流的續流路徑來避免元件產生過高的壓降及導通損耗。本研究會針對傳統氮化鎵元件及改良後氮化鎵元件來進行反向導通區域特性的量測,進而比較兩者元件之間的差異與探討,同時建立具有改善反向導通特性的氮化鎵元件SPICE 模型,並透過雙脈衝測試電路進行模擬與比較。
摘要(英) This study builds a simple and accurate SPICE model for gallium nitride transistors to provide circuit designers so that they can design circuits according to the application and needs. First of all, the basic characteristics of the GaN HEMTs are measured, including the output characteristics, capacitance-voltage curve, dynamic double-pulse test circuit measurement, and the output characteristics at different temperatures. In the past, to establish SPICE model, the segmented equations was used to describe the transistors in the cut-off, linear and saturation regions. However, the behavioral model of GaN HEMTs with segmented equations suffers from
the simulation convergence problem and leads the long simulation time in practice. the use of this non-segmented equation can lead to non-convergence and long simulation time. In order to improve the simulation convergence, this paper proposes a behavioral model which uses nonsegmented, smooth continuous equations to describe the static and dynamic characteristics of GaN HEMTs. In order According to modify the behavior equations and adjustment the parameters to make the simulation and the measurement data fit smoothly. Finally, the double-pulse test circuit is used to verify the switching characteristics of the GaN HEMTs, and a
complete SPICE model is established.

On the other hand, the reverse conduction characteristics of GaN HEMTs are also an important issue for circuit applications, because a freewheeling path of current is required to prevent excessive voltage drop across the devices and prevent the large conduction losses. This
study will measure the characteristics of the reverse conduction region for the conventional GaN HEMT and the modified GaN HEMT, and then compare the differences between these two devices, also builds a reverse SPICE model for the modified GaN HEMT.
關鍵字(中) ★ 氮化鎵
★ 反向導通特性
關鍵字(英) ★ GaN
★ SPICE
★ Reverse Conduction
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2電晶體SPICE模型文獻回顧與電晶體反向導通特性探討 3
1.2.1 電晶體SPICE模型文獻回顧 3
1.2.2 電晶體反向導通特性探討 12
1.3 論文研究動機與目的 17
1.4 章節架構 17
第二章 氮化鎵電晶體之電性量測 18
2.1 前言 18
2.2氮化鎵電晶體之電流-電壓特性 18
2.3氮化鎵電晶體之電容-電壓特性 21
2.4氮化鎵電晶體之雙脈衝測試電路特性 23
2.5氮化鎵電晶體之變溫電流-電壓特性 27
2.6結論 33
第三章 模型建立流程與電性量測數據擬合 34
3.1前言 34
3.2 SPICE模型建立 34
3.2.1 SPICE模型建立流程 34
3.2.2 行為模式方程式與參數 35
3.3電流-電壓特性擬合與方程式和參數修正 36
3.4電容-電壓特性擬合與方程式和參數修正 40
3.5變溫之電流-電壓特性擬合與方程式和參數修正 43
3.6雙脈衝測試電路特性驗證 51
3.7 結論 52
第四章 氮化鎵電晶體反向導通特性分析與模型 53
4.1前言 53
4.2氮化鎵電晶體反向導通特性 53
4.3氮化鎵電晶體結構與反向導通特性量測與分析 55
4.4氮化鎵電晶體反向導通特性模型 62
4.5氮化鎵電晶體反向導通特性之雙脈衝測試電路模擬 65
4.6結論 68
第五章 結論與未來展望 69
參考文獻 71
參考文獻 [1] T. Boles, “GaN-on-Silicon – Present Capabilities and Future Directions,” AIP Conference Proceedings, February 2018.
[2] Efficient Power Conversion, “Where is GaN Going?”.
[3] Kang Peng, Soheila Eskandari, and Enrico Santi, “Characterization and Modeling of a Gallium Nitride Power HEMT,” IEEE Transactions on Industry Applications, Vol. 52, No. 6, pp. 4965–4975, November/December 2016.
[4] L. Zheng, J. J. Tian, Z. Q. Weng, H. Hu, J. Wu, and W. F. Sun, “An improved convergent model for single-photon avalanche diodes,” IEEE Photonics Technology Letters, Vol. 29, No. 10, pp. 798–801, May, 2017
[5] H. Li, X. Zhao, W. Su, K. Sun, T. Q. Zheng, and X. You, “Nonsegmented PSpice Circuit Model of GaN HEMT With Simulation Convergence Consideration,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 11, pp. 8992–8999, November 2017.
[6] S. L. Colino, and R. A. Beach, “Fundamentals of gallium nitride power transistors,” 2009. [Online].
[7] W. R. Curtice, “GaAs MESFET modeling and nonlinear CAD,” IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 2, pp. 220–230, February 1988.
[8] A. Lidow, J. Strydom, M. de Rooij, and Y. Ma, “GaN Transistors for Efficient Power Conversion.,” Efficient Power Conversion Corporation, 2012
[9] K. Kawahara, S. Hino, K. Sadamatsu, Y. Nakao, Y. Yamashiro,Y. Yamamoto, T. Iwamatsu, S. Nakata, S. Tomohisa, and S. Yamakawa, “6.5 kV Schottky-barrier-diode-embedded SiC-MOSFET for compact full-unipolar module,” 29th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 41–44, May/Jun 2017.
[10] H. Ruthing, F. Hille, F. J. Niedernostheide, H.J. Schulze, and B. Brunner, “600 V reverse conducting (RC-)IGBT for drives applications in ultra-thin wafer technology,” in Proc. 19th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 89–92, May 2007.
[11] T. Morita, S. Ujita, H. Umeda, Y. Kinoshita, S. Tamura, Y. Anda, T. Ueda, and T. Tanaka, “GaN Gate Injection Transistor with Integrated Si Schottky Barrier Diode for Highly Efficient DC-DC Converters,” IEEE International Electron Devices Meeting (IEDM), pp. 7.2.1–7.2.4, December 2012.
[12] B. R. Park, J. G. Lee, and H. Y. Cha, “Normally-off AlGaN/GaN-on-Si power switching device with embedded Schottky barrier diode,” Applied Physics Express (APEX), vol. 6, no. 3, February 2013
[13] B. R. Park, J. Y. Lee, J. G. Lee, D. M. Lee, M. K. Kim, and H. Y. Cha, “Schottky barrier diode embedded AlGaN/GaN switching transistor,” Semiconductor Science and Technology, vol. 28, no. 12, Octorber 2013.
[14] R. Reiner, P. Waltereit, B. Weiss, M. Wespel, R. Quay, M. Schlechtweg, M. Mikulla and, O. Ambacher, “Integrated Reverse-Diodes for GaN-HEMT Structures,” 27th IEEE International Symposium on Power Semiconductor Devices and ICs, pp. 45–48, May 2015.
[15] T. F. Wang, J. Ma, and E. Matioli, “1100 V AlGaN/GaN MOSHEMTs With Integrated Tri-Anode Freewheeling Diodes,” IEEE Electron Device Letters, Vol. 39, No. 7, pp. 1038–1041, July 2018.
[16] J. Lei, J. Wei, G. Tang, Q. Qian, Z. Zhang, M. Hua, Z. Zheng and K. J. Chen, “Reverse-Conducting Normally-OFF Double-Channel AlGaN/GaN Power Transistor With Interdigital Built-In Schottky Barrier Diode,” IEEE Transactions on Electron Device, Vol. 66, No. 5, pp. 2106–2112, May 2019.
[17] GaN systems, “GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet,” GS66516T datasheet.
[18] M. H. Broadmeadow, G. R. Walker, and G. F. Ledwich, “Automated power semiconductor switching performance feature extraction from experimental double-pulse waveform data,” Australasian Universities Power Engineering Conference (AUPEC), pp. 1-4, September/Octorber 2018.
[19] 劉宇晨, “射月計畫會議紀錄,” August 2018.
[20] H. H Qin, Y. Zhang, D. Wang, D. F. Fu, and C. H. Zhao, “Evaluating self-commutated reverse conduction characterization of enhancement-mode GaN HEMT for application,” PCIM Asia 2017 : International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 68-73, June 2017.
[21] 何偉誠, “新型加強型氮化鎵高電子遷移率電晶體之電性探討,” 碩士論文, June 2019.
[22] GaN systems, “Application Brief GaN Switching Loss Simulation using LTSpice,” May 2018.
指導教授 辛裕明 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明