博碩士論文 106521024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.147.66.178
姓名 劉宜臻(Yi-Zhen Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
(Fabrication of Submicron GaN-based HEMTs by I-Line Optical Lithography)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析
★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究主題為使用四元材料氮化鋁銦鎵/氮化鋁/氮化鎵成長於矽基板之磊晶片製作高電子遷移率電晶體,以台灣半導體研究中心的 I-line 光學步進機開發閘極微縮製程,利用蝕刻回填的技術來突破光學曝光機台的極限來維持低生產成本,讓元件特性得以應用於毫米波功率放大器。
文中詳述製作 0.25 μm T 型閘極元件之過程,利用蝕刻回填氮化矽之方式,成功將原 0.7 μm 之閘極足部微縮至 0.25 μm。此回填之 SiN 不僅具有微縮閘極線寬的功用,同時兼具鈍化層的作用,且能支撐閘極頭部避免傾倒提高量率。此 T 型閘極 AlInGaN/AlN/GaN HEMT 之零閘極偏壓汲極電流為 537 mA/mm,最大轉導可達 439 mS/mm,電流增益截止頻率可達 58 GHz,功率增益截止頻率可達 73 GHz。功率的結果在 28 GHz 的情況下得到 Pout 為 0.68 W/mm,PAE 為 5.92 %,在 6 GHz 時的 Pout 為 1.78 W/mm,PAE 為 26.93 %。
本論文亦詳述了使用 ICCAP 及 ADS 軟體,考慮此元件的製程設計、磊晶結構及基板,建立小訊號等效電路的方法,並從萃取出之小訊號參數分析其高頻特性與此元件之關係。
摘要(英) This study aims to fabricate deep sub-micron AlInGaN/AlN/GaN high electron mobility transistors grown on silicon substrate using i-line optical lithography processes. Using an i-line stepper from Taiwan Semiconductor Research Center and plasma-enhanced chemical vapor deposition (PECVD) SiNx backfill process, devices with gate length of 0.25 μm or less are fabricated for the application in millimeter wave power amplifiers.
The fabrication process of the 0.25 μm T-gate devices is described as the following. The original 0.7 μm gate foot is successfully shrunk to 0.25 μm by etching the backfilled SiNx, which not only has the function of scaling gate length, but also supporting the gate head to avoid yield loss. Drain current under zero-gate bias (Idss) of 537 mA/mm, maximum transconductance (gm,max) of 439 mS/mm, and current gain cutoff frequency (fT) up to 58 GHz, and power gain cutoff frequency (fmax) of 73 GHz, have been achieved. At 28 GHz and 6 GHz, output power density (Pout) of 0.68 W/mm and 1.78 W/mm, and power added efficiency (PAE) of 5.92 % and 26.93 %, have also been demonstrated, respectively.
This thesis also details the method of using ICCAP and ADS software to construct the small signal model of the devices with factors, such as device processing, layout design, epitaxial structure and effect of substrate, considered in the equivalent circuit. The correlation between device high frequency characteristics and the extracted parameters is analyzed.
關鍵字(中) ★ 高電子遷移率電晶體
★ 氮化鋁銦鎵
★ 光學微影
關鍵字(英) ★ HEMT
★ AlInGaN
★ Optical Lithography
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1前言 1
1.2研究動機與論文架構 7
第二章 閘極微縮設計與 HEMT 元件製作 9
2.1閘極微縮製程設計 9
2.1.1 微縮製程設計 9
2.1.2 厚度條件設計 10
2.1.3 蝕刻回填製程測試 11
2.1.4 歐姆接觸製程測試 18
2.2 HEMTs 元件製程流程 22
第三章 HEMT 小訊號模型 29
3.1量測系統介紹 29
3.1.1 ISS 校正 31
3.1.2 去嵌化(De-Embedding) 32
3.2 小訊號電路模型 33
3.2.1 元件外部寄生參數萃取 35
3.2.2 元件內部本質參數萃取 39
3.2.3 史密斯與極座標圖驗證 42
第四章 T 型閘極 HEMT 特性分析 43
4.1 直流特性分析 44
4.1.1 歐姆接觸特性 44
4.1.2 轉移及輸出特性 45
4.1.3 崩潰特性 47
4.1.4 失敗元件分析 47
4.2 高頻特性分析 50
4.2.1 小訊號特性 50
4.2.2 大訊號特性 54
第五章 結論與未來展望 64
參考文獻 66
參考文獻 [1] C. W. Tsou, et al., "101-GHz InAlN/GaN HEMTs on Silicon with High Johnson′s Figure-of-Merit," IEEE Transactions on Electron Devices, vol. 62, pp. 2675-2678, 2015.
[2] F. Medjdoub, et al., "High Frequency High Breakdown Voltage GaN Transistors," IEEE International Electron Devices Meeting (IEDM), pp. 9.2.1-9.2.4, 2015.
[3] S. Arulkumaran, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, 2014.
[4] R. Wang, et al., "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs with 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," IEEE Electron Device Letters, vol. 31, pp. 1383-1385, 2010.
[5] S. Piotrowicz, et al., "12W/mm with 0.15 μm InAlN/GaN HEMTs on SiC Technology for K and Ka-Bands Applications," IEEE MTT-S International Microwave Symposium (IMS2014), pp. 1-3, 2014.
[6] S. D. Nsele, et al., "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," 2013 22nd International Conference on Noise and Fluctuations (ICNF), pp. 1-4, 2013.
[7] S. Tirelli, et al., "AlN-Capped AlInN/GaN High Electron Mobility Transistors with 4.5 W/mm Output Power at 40 GHz," Japanese Journal of Applied Physics, vol. 52, pp. 08JN16, 2013.
[8] S. Y. Liao, et al., "Gate Length Scaling Effect on High-Electron Mobility Transistors Devices Using AlGaN/GaN and AlInN/AlN/GaN Heterostructures," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 6243-6246, 2014.
[9] S. Arulkumaran, et al., "Enhanced Breakdown Voltage with High Johnson′s Figure-of-Merit in 0.3-μm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment," IEEE Electron Device Letters, vol. 34, pp. 1364-1366, 2013.
[10] K. Kunihiro, et al., "Microwave Performance of 0.3-μm Gate-Length Multi-Finger AlGaN/GaN Heterojunction FETs with Minimized Current Collapse," Japanese Journal of Applied Physics, vol. 39, pp. 2431, 2000.
[11] Y. Zhou, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[12] R. Dingle, et al., "Electron mobilities in modulation-doped semiconductor heterojunction superlattices, " Applied Physics Letters, vol. 33, pp. 665-667, 1978.
[13] O. Ambacher, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[14] M. Gonschorek, et al. "High electron mobility lattice-matched AlInN∕ GaN field-effect transistor heterostructures," Applied physics letters, vol. 89, pp. 062106, 2006.
[15] N. Ketteniss, et al., "Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates," Semiconductor Science and Technology, vol. 25, pp. 075013, 2010.
[16] F. Medjdoub, et al., "High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure," Applied Physics Express, vol. 8, pp. 101001, 2015.
[17] W. S. Tan, et al., "Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors, " Journal of Physics D: Applied Physics, vol. 35, pp. 595, 2002.
[18] G. Dambrine, et al., "A new method for determining the FET small-signal equivalent circuit," IEEE Transactions on microwave theory and techniques, vol. 36, pp. 1151-1159, 1988.
[19] P. M. White, et al., "Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from coldfet measurements,"IEEE microwave and guided wave letters, vol. 3, pp. 453-454, 1993.
[20] J. Lu, et al. "A new small-signal modeling and extraction method in AlGaN/GaN HEMTs." Solid-State Electronics, vol. 52, pp. 115-120, 2008.
[21] M. Berroth and R. Bosch, "Broad-Band Determination of the FET Small- Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 891-895, 1990.
[22] M. T. Yang, et al., "Broadband small-signal model and parameter extraction for deep sub-micron MOSFETs valid up to 110 GHz," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 369-372, 2003.
[23] D. Xiao, et al., "Detailed analysis of parasitic loading effects on power performance of GaN-onsilicon HEMTs," Solid-State Electronics, vol. 53, pp. 185-189, 2009.
[24] S. Tirelli, "GaN-based HEMTs for High Power RF Applications," PhD Thesis. ETH Zurich, 2014.
[25] D. Marti, et al., "150-GHz cutoff frequencies and 2-W/mm output power at 40 GHz in a millimeter-wave AlGaN/GaN HEMT technology on silicon,"IEEE Electron Device Letters, vol. 33, pp. 1372-1374, 2012.
[26] D. C. Dumka, et al., "AlGaN/GaN HEMTs on Si substrate with 7 W/mm output power density at 10 GHz," Electronics Letters, vol. 40, pp. 1023-1024, 2004.
[27] D. Marcon, et al., "GaN-on-Si HEMTs for 50V RF applications," 2012 7th European Microwave Integrated Circuit Conference, pp 325-328, 2012.
[28] H. Sun, et al., "102-GHz AlInN/GaN HEMTs on silicon with 2.5-W/mm output power at 10 GHz," IEEE Electron Device Letters, vol. 30, pp. 796-798, 2009.
[29] G. Meneghesso, et al., "First reliability demonstration of sub-200-nm aln/gan-on-silicon double-heterostructure hemts for ka-band applications," IEEE Transactions on Device and Materials Reliability, vol. 13, pp. 480- 488, 2013.
[30] S. C. Binari, et al., "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 48, pp. 465-471, 2001.
[31] R. Yeats, et al., "Gate slow transients in GaAs MESFETs—Causes, cures, and impact on circuits," Technical Digest., International Electron Devices Meeting, pp. 842–845, 1988.
[32] J. C. Huang, et al., "An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for Xand Ku-band power applications," IEEE transactions on microwave theory and techniques, vol. 41, pp. 752-759, 1993.
[33] R. Aubry, et al., "ICP-CVD SiN passivation for high-power RF InAlGaN/GaN/SiC HEMT." IEEE Electron Device Letters, vol. 37, pp. 629-632, 2016.
[34] R. Behtash, et al., "AlGaN/GaN HEMTs on Si (111) with 6.6 W/mm output power density," Electronics Letters, vol. 39, pp. 626-627, 2003.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明