博碩士論文 106521026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.144.230.158
姓名 廖偉筑(Wei-Chu Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基鍺模板上N通道砷化銦鎵及P通道鍺鰭式場效電晶體之研製
(Fabrication of n-channel InGaAs and p-channel Ge Fin Field-Effect Transistors on Ge/Si Templates)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著積體電路技術的快速發展,現今矽晶圓廠的生產技術已發展至5奈米節點,電晶體性能逐漸接近物理極限,需要尋找新架構且容忍度較大之通道材料來突破。根據產業技術發展的情形,具有高電子遷移率的Ⅲ-Ⅴ族砷化銦鎵與具有高電洞遷移率的鍺,被認為是製作N型與P型場效電晶體具有潛力的材料。因此,如何實現異質整合之鍺與砷化銦鎵互補式金氧半電晶體是未來量產化的關鍵技術之一。本研究率先開發於矽基板上製備鍺模板,接著以有機金屬化學蒸氣沉積法(MOCVD)選擇性成長砷化鋁銦/砷化銦鎵於其上,並研製鰭式場效電晶體(FinFET)。
  本研究比較乾式與濕式蝕刻方式將鍺溝槽底部形貌之影響,並觀察其對後續選擇性磊晶砷化鋁銦所產生之缺陷多寡及對元件特性之影響。此二法所製作之砷化銦鎵鰭式場效電晶體在通道寬度100奈米與閘極長度為60奈米下之最大電流密度分別為77.8 μA/μm及74 μA/μm,次臨界擺幅(S.S.)分別為468 mV/dec.與810 mV/dec.,二者之閘極漏電密度則皆低於5×10-6 μA/μm。此研究所製作之鍺鰭式場效電晶體於通道寬度40奈米閘極長度為60奈米之最大電流密度為35 μA/μm,次臨界擺幅(S.S.)為2217 mV/dec.,而閘極漏電密度為2.47×10-5 μA/μm。此研究已將三五族與鍺鰭式場效電晶體整合於矽基板上,未來在優化選擇性成長技術與閘極製程技術後,應可降低次臨界擺幅、提升汲極電流密度、降低閘極漏電流密度。
摘要(英) While Si complementary metal-oxide-semiconductor (CMOS) manufacturing technology comes to 5 nm technology nodes, current transistor technology is also approaching its physical limit. The quests for energy efficient transistors and high mobility channel materials have provoked tremendous research efforts worldwide in recent years. Among the options that are closer to reality, InGaAs and Ge, which has high electron mobility and high hole mobility, respectively, are of great interest for n-channel and p-channel materials. Heterogeneous integration of these two materials on Si substrate is therefore a key technology to develop for future mass production. This study concerns the fabrication of InGaAs fin field-effect transistors(FinFETs)using selective area growth (SAG) in Ge trenches on Si substrates by MOCVD.
  In this study, the Ge trenches were prepared by dry etching and wet etching methods to investigate how the resultant trench morphology affects the growth of InAlAs/InGaAs fins and the device characteristics. The maximum current density of the InGaAs FinFETs fabricated by these two methods devices is 77.8 μA/μm and 74 μA/μm with a sub-threshold swing (S.S.) of 468 mV/dec and 810 mV/dec, respectively, for the devices with a channel width of 100 nm and a gate length of 60 nm. The gate leakage density of both devices is lower than 5×10-6 μA/μm. The maximum current density of the Ge FinFETs with a channel width of 40 nm and a gate length of 60 nm is 35 μA/μm, and has a sub-threshold swing (S.S.) of 2217 mV/dec. The gate leakage density is 2.47×10-5 μA/μm.
  This work demonstrates the integration of InGaAs and Ge FinFETs on a Ge/Si template. In-depth analysis indicates that further optimization on the selective area growth and gate-stack processes is required to achieve higher drain current density and lower sub-threshold swing.
關鍵字(中) ★ 鰭式場效電晶體
★ 砷化銦鎵
★ 鍺
關鍵字(英) ★ Fin Field-Effect Transistors
★ InGaAs
★ Ge
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 高載子遷移率材料介紹 2
1.2.2 選擇性磊晶成長砷化銦鰭式場效電晶體之文獻回顧 6
1.2.3 鍺鰭式場效電晶體之文獻回顧 8
1.3 論文架構 10
第二章 實驗設備與參數萃取方式 11
2.1 前言 11
2.2 實驗儀器 12
2.2.1 電子束微影系統簡介 12
2.2.2 原子層沉積系統簡介 12
2.3 參數萃取方式 14
2.3.1 鰭式場效電晶體不同尺寸其定義 14
2.3.2 臨界電壓定義(Threshold Voltage) 15
2.3.3 次臨界擺幅定義(Sub-threshold Swing) 15
2.3.4電流開關比(On Off Ratio) 16
2.3.5汲極引發位能障下降定義(Drain Induce Barrier Lowing) 16
第三章 選擇性磊晶砷化銦鎵鰭式場效電晶體 17
3.1 前言 17
3.2 選擇性磊晶基板製作 18
3.3 選擇性磊晶前蝕刻及成長三五族材料 19
3.3.1 選擇性磊晶前濕式蝕刻及成長三五族材料之影響 19
3.3.2 選擇性磊晶前乾式蝕刻及成長三五族材料之影響 24
3.3.3 磊晶前乾蝕刻與濕蝕刻比較 29
3.4 不同選擇性磊晶前蝕刻砷化銦鎵鰭式場效電晶體 32
3.4.1 選擇性磊晶砷化銦鎵鰭式場效電晶體製作 32
3.4.2 選擇性磊晶砷化銦鎵鰭式場效電晶體特性分析 38
3.5 本章結論 42
第四章 鍺鰭式場效電晶體 43
4.1 鍺鰭式場效電晶體製作 43
4.2 鍺鰭式場效電晶體特性分析 50
4.3 本章總結 52
第五章 總結 53
參考文獻 55
參考文獻 [1] S. Takagi, M. Noguchi, M. Kim, S.-H. Kim, C.-Y. Chang, M. Yokoyama, K. Nishi, R. Zhang, M. Ke, and M. Takenaka, “III-V/Ge MOS device technologies for low power integrated systems,” Solid-State Electron., vol. 125, pp. 82-102, 2016.
[2] D. J. Smith, J. Lu, T. Aoki, M. R. McCartney, and Y.-H. Zhang, “Observation of compound semiconductors and heterovalent interfaces 65 using aberration-corrected scanning transmission electron microscopy,” Journal of Materials Research, vol. 32, pp. 921-927, 2016.
[3] N. Waldron, C. Merckling, W. Guo, P. Ong, L. Teugels, S. AnsarI, D. Tsvetanova, F. Sebaai, D.H. van Dorp, A Milenin, D. Lin, L. Nyns, J. Mitard,
A Pourghaderi, B. Douhard, O. Richard, H. Bender, G. Boccardi, M. Caymax, M. Heyns, W. Vandervorst, K. Barla, N. Collaert and AV-Y. “An InGaAs/InP Quantum Well FinFET Using the Replacement Fin Process Integrated in an RMG Flow on 300mm Si Substrates,” in Symposium on VLSI Technology Digest of Technical Papers, 2014.
[4] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni and J. Fompeyrine, “Confined Epitaxial Lateral Overgrowth (CELO): A Novel Concept for Scalable Integration of CMOS-compatible InGaAs-on-insulator MOSFETs on Large-Area Si Substrates,” in Symposium on VLSI Technology Digest of Technical Papers, pp. T172-T173, 2015.
[5] M. L. Huang, S. W. Chang, M. K. Chen, Y. Oniki, H. C. Chen, C. H. Lin, W. C. Lee, C. H. Lin, M. A. Khaderbad, K. Y. Lee, Z. C. Chen, P. Y. Tsai, L. T. Lin, M. H. Tsai, C. L. Hung, T. C. Huang, Y. C. Lin, Y.-C. Yeo, S. M. Jang, H. Y. Hwang, Howard C.-H. Wang, and Carlos H. Diaz, “High performance Ino.53Gao.47As FinFETs fabricated on 300 mm Si substrate,” in Symposium on VLSI Technology Digest of Technical Papers, 2016.
[6] Cezar B. Zota, Fredrik Lindelow, Lars-Erik Wernersson and Erik Lind, “InGaAs Tri-gate MOSFETs with Record On-Current ,” in Electron Device Meeting (IEDM), pp.56-58, 2016
[7] M.J.H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, T.M Shen, C.C. Wu, R. Oxland, K. Bhuwalka, M. Holland, T.L. Lee, C. Wann, C.H. Hsieh, B.H. Lee, K.M. Yin, Z.Q. Wu, M. Passlack, and C. Si H. Diaz, “Demonstration of scaled Ge p-channel FinFETs integrated on, ” in Electron Device Meeting (IEDM), pp.521-524, 2012.
[8] Heng Wu, Wei Luo, Hong Zhou, Mengwei Si, Jingyun Zhang and Peide D. Ye, “First Experimental Demonstration of Ge 3D FinFET CMOS Circuits,” in Symposium on VLSI Technology Digest of Technical Papers, pp. T58-T59, 2015.
[9] M.-S. Yeh, G.-L. Luo, F.-J. Hou, P.-J. Sung, C.-J. Wang, C.-J. Su, C.-T. Wu, Y.-C. Huang, T.-C. Hong, T.-S. Chao, B.-Y. Chen, K.-M. Chen, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y.-J. Lee, W.-F. Wu, W.-K. Yeh, “Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment,” IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers, pp. 205-207, 2018.
[10] M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, and M. Heyns, “Site selective integration of III−V materials on Si for nanoscale logic and photonic devices,” Crystal Growth & Design, 12, pp. 4696-4702, 2012.
[11] 許乃蓉:〈鍺與砷化銦鎵鰭式場效電晶體共閘極製程之開發〉,碩士論文,國立中央大學,2017。.
[12] 鄒承翰:〈開發具鈦鋁矽銅歐姆接觸之砷化銦鎵金氧半場效電晶體〉,碩士論文,國立中央大學,2017。
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2020-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明