博碩士論文 106521067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.226.245.48
姓名 陳彥維(Yen-Wei Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可調頻磁共振式無線功率傳輸系統之研究
(Study on Magnetic Resonance Wireless Power Transmission System with Adjustable Frequency)
相關論文
★ 高效能電子轉向控制器設計★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計
★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計
★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用
★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計
★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計★ 微電網與市電併聯之同步控制器設計
★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析
★ 具共振頻率切換之多輸出無線功率傳輸裝置研製★ 高功率雷射源之切換式電源供應器
★ 應用於微電網故障保護之專家系統★ 微電網之孤島與併網模式切換技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-22以後開放)
摘要(中) 本論文旨在研究可攜式電子產品無線功率傳輸系統技術改良,將市售可攜式無線功率傳輸電子產品進行線圈參數的量測,以及特性的分析,再利用線圈參數與特性,於期望頻率點進行補償電容的匹配,並將所得線圈參數與補償電容置於先進設計系統(Advanced Design System, ADS)進行模擬分析與驗證,以確保補償電路於期望頻率點達到共振的準確性,及整體無線功率傳輸架構的傳輸效果。最後藉由實測驗證,根據所需頻率點進行電容補償,可有效提升整體系統傳輸效率。
摘要(英) The purpose of this thesis is to design wireless power charging platform for diverse portable electronic products with different frequencies, so as to improving commercial wireless power chargers’ transmission efficiency. First, through measure the coils and analyze the equivalent circuit of magnetic resonance wireless power transmission system, the relationship between transmission efficiency and relevant parameters are derived. According to the required frequency, compensation capacitors are obtained by the principle of impedance matching. Then, use Advanced Design System (ADS) for simulations to ensure that the system performs at the required frequency. Finally, the system is implemented in experimental circuit to verify the overall system transmission efficiency can effectively uprate at same the resonant efficiency.
關鍵字(中) ★ 無線功率傳輸系統
★ 磁共振
★ 補償電容
關鍵字(英)
論文目次 論文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 無線功率傳輸技術發展與應用 3
1-3 實驗目的與動機 7
1-4 論文大鋼 8
第二章 無線功率傳輸基本特性與原理分析 9
2-1 無線功率傳輸裝置系統架構 9
2-2 耦合電路架構之非理想效應 10
2-2-1集膚效應 11
2-2-2 鄰近效應 13
2-3 等效電路架構分析 15
2-4 共振電路補償電容分析 18
2-4-1 一次側之共振電路分析 20
2-4-2 二次側之共振電路分析 22
2-4-3 SS補償架構 24
2-4-4 SP補償架構 26
2-4-5 PS補償架構 28
2-4-6 PP補償架構 30
2-4-7 補償結構之比較與選擇 32
第三章 無線功率傳輸系統分析與設計原理 34
3-1 前言 34
3-2 線圈特性 34
3-2-1 線圈常用結構 35
3-2-2 耦合係數 36
3-2-3 品質因數 37
3-2-4 導磁材料 38
3-3 非接觸式耦合傳能分析 39
3-3-1 鬆耦合變壓器 39
3-3-2 互感與耦合係數之參數量測 41
3-4 負載對無線功率傳輸影響 42
3-4-1 頻率分叉現象 43
3-4-2 頻率穩定性分析 44
第四章 無線功率傳輸之硬體電路設計與製作 47
4-1前言 47
4-2 無線功率傳輸平台架構 47
4-2-1 單晶片控制選用 48
4-2-2 光耦合器 49
4-2-3 全橋轉換器 51
4-2-4 整流濾波電路 56
4-2-5 負載 56
第五章 系統模擬與實驗結果 57
5-1 前言 57
5-2 線圈規格 57
5-3 系統模擬 59
5-4 硬體電路 64
5-5 實際量測 66
第六章 結論與未來研究發展 72
6-1 結論 72
6-2 未來研究方向 73
參考文獻 74
參考文獻 [1] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., Vol. 31, No. 1, pp. 27-35, 1995.
[2] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, pp. 418-423, 1994.
[3] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., Vol. 28, No. 5, pp. 2046-2408, 1992.
[4] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., Vol. 37, No.4, pp. 2921-2924, 2001.
[5] L. Hongchang, W. Kangping, H. Lang, C. Wenjie, and Y. Xu, “Dynamic modeling based on coupled modes for wireless power transfer systems,” IEEE Trans. on Power Electronics, Vol. 30, No. 11, pp. 6245-6253, 2015.
[6] Z. Yiming, L. Ting, Z. Zhengming, Z. Fanbo, C. Kainan, and Y. Liqiang, “Employing load coils for multiple loads of resonant wireless power transfer,” IEEE Trans. on Power Electronics, Vol. 30, No. 11, pp. 6174-6181, 2015.
[7] L. Y. Long, M. F. Yi, Y. G. Xui, C. B. Jun, W. Qun, S. Li, E. Daniel, and L. J. L. Wei, “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Trans. on Power Electronics, Vol. 30, No. 11, pp. 6097-6107, 2015.
[8] C. Zhong, J. Wuwei, Z. Xueliang, T. Linlin, C. Chen, and W. Wei, “A promoted design for primary coil in roadway-powered system,” IEEE Trans. on Power Magnetics, Vol. 51, No. 11, pp. 1-4, 2015.
[9] L. Byunghun, K. Mehdi, and G. Maysam, “A triple-loop inductive power transmission system for biomedical applications,” IEEE Trans. on Biomedical Circuits and Systems, Vol. 10, No. 1, pp. 138-148, 2016.
[10]K. Andre, K. Aristeidis, M. Robert, J. D. Joannopoulos, F. Peter, and S. Marin, “Wireless power transfer via strongly coupled magnetic resonances,” Science, Vol. 317, pp. 83-86, 2007.
[11]A. Karalis, J. D. Joannopoulos, and S. Marin, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics, Vol. 3, No. 23, pp. 34-48, 2008.
[12]S. Gaurav, G. Akhil, and A. Shashibala, “Wireless charging system using resonant coupling,” International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 2017.
[13] 謝周宇、江朝文,「磁共振無線充電系統之圈設計與分析」。第 12屆台灣電力電子研討暨展覽會,第565-568頁,台灣台南市,2013年 11月。
[14]D. K. Cheng, Field and wave electromagnetics. 2nd ed, Addison-Wesley, 1989.
[15]H. A. Wheeler, “Formulas for the skin effect,” Proc. IRE, pp. 412-425, 1942.
[16]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. 2nd ed., U.S.A.: Wiley, 2009.
[17]N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC, pp. 853-860, 2003.
[18]S. Chopra and P. Bauer, “Analysis and design considerations for a contactless power transfer system,” 33rd International Telecommunications Energy Conference (INTELEC), pp. 9-13, 2011.
[19]S. Cui, Z. Z. Liu, Y. J. Hou, H. Zeng, Z. K. Yue and L. H. Liang, “Study on efficiency of different topologies of magnetic coupled resonant wireless charging system,” IOP Conference Series: Earth and Environment Science, Vol. 93, 2017.
[20]C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. Power Con., Vol. 2, pp. 1039-1044, 2000.
[21]H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of secondary coil,” IEEE Trans. Ind. Appl., Vol. 36, pp. 444-451, 2000.
[22]J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Staoh, “Consideration on cordless power station-contactless power transmission system,” IEEE Trans. Magn., Vol. 32, No. 5, pp. 5037-5039, 1996.
[23]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., Vol. 51, No. 1, pp.148-157, 2004.
[24]W. C. Sen, O. H. Stielau, and G. A. Covic, “Design consideration for a contactless electric vehicle battery charge,” IEEE Transactions on Industrial Electrons, Vol. 52, No. 5, pp. 1308-1314, 2005.
[25]S. A. Sabki and N. M. L. Tan, “Performance improvement of electric vehicle inductive-power transfer system using series-series capacitor compensation,” IEEE Conf. on Energy Conversion (CENCON), Johor Bahru, Malaysia, 2015.
[26]W. H. Ko, S. P. Liang, and C. D. F. Fung, “Design of radio-frequency powered coils for implant instruments,” Medical & Biological Engineering & Computing, pp 634-640, 1977.
[27]J. Li, Q. Deng, W. Hu, and H. Zhou, “Research on quality factor of the coils in wireless power transfer system based on magnetic coupling resonance,” IEEE PELS Workshop on Emerging Technologies, 2017.
[28]Z. Yiming, L. Ting, Z. Zhengming, H. Fanbo, C. Kainan, and Y. Liqiang, “Selective wireless power transfer to multiple loads using receivers of different resonant frequencies,” IEEE Transactions on Power Electronics, Vol. 30, No. 11, pp. 6001-6005, 2015.
[29]J. K. Liao, Y. K. Hung, and H. M. Hsu, “Wireless power transfer efficiency of variable load impedance,” IEEE Wireless Power Transfer Conference, 2017.
[30]W. Zhongxian, L. Yiping, W. Yonggeng, and S. Yilin, “Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system,” Journal of Applied Biomaterial & Functional Materials, Vol. 16, pp. 140-149, 2018.
[31]B. TeckChuan, K. Masaki, I. Takehiro, and H. Yoichi, “Wireless power transfer system via magnetic resonant coupling at fixed resonance frequency-power transfer system based on impedance matching,” World Electric Vehicle Journal, Vol. 4, pp. 744-753, 2010.
[32]Z. Yiming and Z. Zhengming, “Frequency splitting analysis of two-coil resonant wireless power transfer,” IEEE Antennas and Wireless Propagation Letters, Vol. 13, pp. 400-402, 2014.
[33]S. A. Sis and S. Kavut, “A frequency-tuned magnetic resonance-based wireless power transfer system with near-constant efficiency up to 24 cm distance,” Turkish Journal of Electrical Engineering & Computer Sciences, 2018.
[34]Z. Yiming, Z. Zhengming, and C. Kainan, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Transactions on Industry Applications, Vol. 50, No. 4, pp. 2436-2445 2014.
[35]林正宏,郭書瑋,鄭世仁,邱煌仁,羅有綱,李俊毅,陳永松,「1kW全橋相移式升壓型零電壓切換轉換器之研製」,中華民國第三十一屆電力工程研討會,台灣台南市,2010年12月。
[36]C. H. M. Jensen, F. M. Spliid, J. C. Hertel, Y. Nour, T. G. Zsurzsan, and A. Knott, “Resonant full-Bridge synchronous rectifier utilizing 15V GaN transistors for wireless power transfer applications following AireFuel standard operating at 6.78 MHz,” IEEE, 2018.
[37]H. Hou, C. Qianhong, W. S. Chung, C. K. Tse, and R. Xinbo, “Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, pp. 124-136, 2015.
指導教授 陳正一 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明