博碩士論文 106521098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.226.245.48
姓名 趙宇軒(Yu-Hsuan Chao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於太赫茲影像雷達及無線通訊系統之40-nm CMOS壓控振盪器
(A Voltage Controlled Oscillator in 40-nm CMOS for THz Imaging Radar and Wireless Communication Applications)
相關論文
★ 以90-nm CMOS 製程實現之47-GHz 壓控振盪器設計★ 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計
★ 應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器★ 使用40奈米互補式金氧半製程之85-GHz功率放大器設計
★ 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-27以後開放)
摘要(中) 本篇論文提出應用於太赫茲影像雷達系統之85-GHz調頻訊號產生器及應用於200-GHz無線發射機系統之100-GHz壓控振盪器(Voltage Controlled Oscillator, VCO),皆採用40-nm CMOS製程實現,達到體積小、低成本及高性能之優勢。
85-GHz調頻訊號產生器使用85-GHz壓控振盪器採用交互耦合對架構產生振盪訊號,經一組除頻鏈(Divider Chain)將訊號頻率降至10 GHz附近,由於起始振盪訊號頻率較高,使用擁有高頻段及低功耗的兩級直接注入鎖定除頻器(Injection-Locked Frequency Divider, ILFD)電路實現,將頻率降至20 GHz左右,再由高鎖定範圍的電流模式邏輯除頻器(Current-Mode Logic, CML)電路達成除數為八之除頻鏈,最後經10-GHz輸出緩衝器輸出功率為-9 dBm的差動訊號,調頻範圍達12.2%,整體功耗為53.2 mW。搭配Analog Devices之ADF4159商用模組控制壓控振盪器的控制電壓,實現頻率隨時間變化的鋸齒波。並在壓控振盪器與除頻鏈之間加入輸入與輸出緩衝器,可量測85 GHz振盪訊號品質,若未符合預計規格,可利用外部訊號產生器提供85 GHz訊號至除頻鏈,避免後級除頻鏈電路無法進行量測。
200-GHz無線發射機系統使用100-GHz壓控振盪器加入八組開關電容使其維持一定相位雜訊表現並增加調頻範圍,使用100-GHz緩衝器與放大器提供隔離與放大的功能,並在兩級之間加入測試電路,可量測前級壓控振盪器之起振頻率範圍,再透過100-GHz功率放大器使功率提升,使用100-GHz倍頻器,使訊號二倍頻至200 GHz,並加入振幅偏移調變器(Amplitude Shift Keying, ASK)載入20 Gbps數位訊號進行調變,輸出功率達0.3 dBm,最後透過介電共振器天線(Dielectric Resonator Antenna, DRA)將訊號傳送至接收機。此200-GHz無線發射機系統整體頻寬為6.2%,總功耗為230 mW。
摘要(英) An 85-GHz chirp generator applied to THz imaging radar system and a 100-GHz VCO applied to 200-GHz transmitter for wireless communication are proposed in this thesis. By realizing in 40-nm CMOS technology, both chirp generator and transmitter system are small size, low cost and high performance.
An 85-GHz chirp generator is composed of an 85-GHz cross-coupled VCO and a divide-by-8 divider chain. Due to high operating frequency of the VCO, ILFD with high speed and low power dissipation is used. Two stages of ILFD are included, so the input signal can be reduced by 4 times. The last stage of the divider chain is a wide locking range CML divider which output frequency is around 10 GHz. This 85-GHz chirp generator can provide -9 dBm output power with 12.2% locking range and power consumption of 53.2 mW. The control voltage of the VCO is tuned by ADF4159 of Analog Devices. In this way, the chirp generator can provide a sawtooth ramp FMCW signal. In order to measure the VCO oscillating signal and provide 85 GHz signal from signal generator while the VCO doesn’t work out, we design an I/O buffer between the VCO and the divider chain.
A 200-GHz transmitter system consists of a 100-GHz VCO, a 100-GHz buffer with amplifier circuit, a 100-GHz power amplifier, a 100-GHz frequency doubler, an amplitude shift keying, and a dielectric resonator antenna. A 100-GHz VCO includes 8 switchable capacitors, which can keep low phase noise while increasing the tuning range. A test circuit between 100-GHz buffer and amplifier circuit is designed to measure resonant frequency of the VCO. The output power of this 200-GHz transmitter system achieves 0.3 dBm with 6.2% bandwidth and power consumption of 230 mW.
關鍵字(中) ★ 太赫茲波
★ 毫米波
★ 壓控振盪器
★ 調頻訊號產生器
★ 發射機
關鍵字(英) ★ Terahertz Wave
★ Millimeter Wave
★ Voltage Controlled Oscillator
★ Chirp Generator
★ Transmitter
論文目次 摘要 ix
Abstract x
誌謝 xi
目錄 xii
圖目錄 xv
表目錄 xix
第一章、 緒論 1
1.1 太赫茲波技術 1
1.2 頻率調變連續波雷達技術 2
1.3 研究動機 4
1.4 論文架構 7
第二章、 85-GHz壓控振盪器 8
2.1 振盪器原理 8
2.2 振盪器架構 11
2.2.1 環形振盪器 11
2.2.2 LC振盪器 12
2.2.2.1 交互耦合對振盪器 13
2.2.2.2 考畢茲振盪器 14
2.3 85-GHz壓控振盪器電路 17
2.3.1 電路設計與分析 17
2.3.2 佈局考量 22
2.3.3 模擬與量測結果 24
2.3.3.1 模擬結果 24
2.3.3.2 量測結果 27
第三章、 85-GHz調頻訊號產生器 34
3.1 系統架構 34
3.2 ADF4159晶片 35
3.3 壓控振盪器 36
3.4 輸入與輸出緩衝電路 40
3.5 直接注入鎖定除頻器 42
3.6 電流模式邏輯除頻器 46
3.7 輸出緩衝器 48
3.8 85-GHz調頻訊號產生器佈局考量與模擬結果 50
3.8.1 佈局考量 50
3.8.2 模擬結果 51
3.9 量測考量 54
3.10 比較與討論 55
第四章、 200-GHz無線發射機系統 56
4.1 系統架構 56
4.2 3對8線解碼器 57
4.3 100-GHz壓控振盪器 60
4.4 100-GHz緩衝器與放大器 65
4.5 200-GHz無線發射機系統佈局考量 68
4.6 100-GHz壓控振盪器量測結果 69
4.7 200-GHz無線發射機系統模擬結果 71
第五章、 總結與未來展望 73
5.1 總結 73
5.2 未來展望 74
參考文獻 75
參考文獻 [1] K. Ahi, “Mathematical modeling of THz point spread function and simulation of THz imaging systems,” IEEE Trans. THz Sci. Technol., vol. 7, no. 6, pp. 747-754, Nov. 2017.
[2] I. Hosako et al., “At the dawn of a new era in terahertz technology,” Proc. IEEE, vol. 95, no. 8, pp. 1611-1623, Aug. 2007.
[3] B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE, vol.95, no.8, pp.1592–1604, Aug. 2007.
[4] S. H. Baek, H. B. Lim, and H. S. Chun, “Detection of Melamine in foods using terahertz time-domain spectroscopy,” J. Agricultural Food Chemistry, vol. 62, no. 24, pp. 5403-5407, 2014.
[5] M. D. King, W. D. Buchanan, and T. M. Korter, “Identification and quantification of polymorphism in the pharmaceutical compound diclofenac acid by terahertz spectroscopy and solid-State density functional theory,” Analytical Chemistry, vol. 83, no. 10, pp. 3786-3792, May 2011.
[6] K. B. Cooper et al., “THz imaging radar for standoff personal screening,” IEEE Trans. Terahertz Science Technol., vol. 1, no. 1, pp. 169-182, Sep. 2011.
[7] M. Kowalski and M. Kastek, “Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 9, pp. 2028-2035, Sep. 2016.
[8] K. Fukunaga and P. Marcello, “Terahertz spectroscopy applied to the analysis of artists’ materials,” Applied Physics A., vol. 100, pp. 591-597, Sep. 2010.
[9] K.-C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag., vol. 12, no. 4, pp. 108-116, Jun. 2011.
[10] G. Ducournau et al., “THz communications using photonics and electronic devices: The race to data-rate,” J. Infr. Millim. Terahertz Waves, vol. 36, no. 2, pp. 198-220, Feb. 2015.
[11] A. Hirata and M. Yaita, “Ultrafast terahertz wireless communications technologies,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 6, pp. 1128-1132, Nov. 2015.
[12] S. Nounouh, K. Haddadi, T. Lasri, “Cancellation technique for CW ground penetrating radar applications”, IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 343-345, May 2015.
[13] B. Mencia-Oliva et al., “Experimental radar imager with sub-cm range resolution at 300 GHz,” IEEE Radar Conf., pp. 1–6, Apr. 2013
[14] H. Quast and T. Loffler, “3D-terahertz-tomography for material inspection and security,” 34th Int. Conf. on Infrared, Millim. THz Waves, pp. 1–2, Sep. 2009
[15] J. Grajal et al., “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Trans. Micro. Theory Tech., vol. 63, no. 3, pp. 1097- 1106, Mar. 2015
[16] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications,” IEEE J. Solid-State Circ., vol. 45, pp. 928-937, Apr. 2010.
[17] A. G. Stove, “Linear FMCW radar techniques,” Proc. IEE, Radar and Signal Processing, vol. 139, no. 5, pp. 343–350, Oct. 1992.
[18] K. Cooper, R. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Tran. Terahertz Sci. Technol., vol. 1, no. 1, pp. 169–182, Sep. 2011.
[19] C. Weg, W. von Spiegel, R. Henneberger, R. Henneberger, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared, Millim., Terahertz Waves, vol. 30, pp. 1281–1296, Dec. 2009.
[20] J. Grajal et al., “3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV,” IEEE Tran. Microwave Theory and Techniques, vol. 63, no. 3, pp. 1097–1107, Jan. 2015.
[21] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication, vol. 12, pp. 16-32, Nov. 2014.
[22] B.Razavi, “RF microelectronics”,2nd edition, Prentice - Hall, 2011
[23] N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “SiGe bipolar VCO with ultra-wide tuning range at 80 GHz center frequency,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2655–2662, Oct. 2009.
[24] R. Kananizadeh and O. Momeni, “A 190-GHz VCO with 20.7% tuning range employing an active mode switching block in a 130 nm SiGe BiCMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 8, pp. 2094-2104, Aug. 2017.
[25] A. Mostajeran, A. Cathelin, and E. Afshari, “A 170-GHz Fully Integrated Single-Chip FMCW Imaging Radar with 3-D Imaging Capability,” IEEE J. Solid-State Circuit, vol. 52, pp. 2721-2734, Oct. 2017.
[26] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” 19th International Conference on Microwaves, Radar & Wireless Communications, Warsaw, pp. 91-96, May 2012.
[27] Fujishima et al., “98 mW 10 Gbs wireless transceiver chipset with D-band CMOS circuits,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2273-2284, Oct. 2013.
[28] N. Weissman, S. Jameson, and E. Socher, “A packaged 106-110 GHz bi-directional 10Gbs 0.11 pJ/bit/cm CMOS transceiver,”in Proc. IEEE Int. Microwave Symp. (IMS), May 2015.
[29] Y. Chao and H. C. Luong, “Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2403-2418, Oct. 2013.
[30] Y. Chao and H. C. Luong, “Analysis and design of wide-band millimeter-wave transformer-based VCO and ILFDs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1416-1425, Sep. 2016.
[31] N. Ono et al., “135 GHz 98 mW 10 Gbps ASK transmitter and receiver chipset in 40 nm CMOS,” Proc. Symp. VLSI Circuits, pp. 50-51, June 2012.
[32] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564-580, Mar. 2014.
[33] S. Moghadami et al., “A 210 GHz fully-integrated OOK transceiver for short-range wireless chip-to-chip communication in 40 nm CMOS technology,” IEEE Trans. THz Sci. Technol., vol. 5, no. 5, pp. 737-741,Sep. 2015.
[34] S. Kang, S. Thyagarajan, and A. Niknejad, “A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2256-2267, Oct. 2015.
[35] J. Park et al., “A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication,” in Proc. IEEE Symp. VLSI Circuits, pp. 48–49, June 2012.
指導教授 傅家相 李俊興(Jia-Shiang Fu Chun-Hsing Li) 審核日期 2019-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明