博碩士論文 106521099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.176.131
姓名 李哲瑋(Jhe-Wei Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 CMOS多相位鎖相迴路與低相位雜訊低抖動次諧波注入鎖定四相位鎖頻迴路
(CMOS Multiphase Phase-Locked Loop and Low-Phase Noise and Low-Jitter Sub-Harmonic Injection-Locked Quadrature Frequency-Locked Loop)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-17以後開放)
摘要(中) 在現代通訊系統中為了因應高速資料傳輸量的需求,射頻的收發機系統之高頻寬的優勢也顯現出來,其中本地振盪源作為系統中升降頻的角色十分重要。而本地振盪源對相位雜訊的要求是非常嚴苛的,若是相位雜訊太差將會加到接收訊號上,會降低整體系統性能。本論文所提出鎖相迴路可準確提供穩定頻率,而注入鎖定技術可以有效降低相位雜訊,再搭配無除頻器架構來提升整體鎖定頻寬,來達到寬頻、低功耗、低相位雜訊、低抖動量之四相位振盪器。
第二章為X頻段多相位鎖相迴路,電路使用台積電0.18 μm互補式金屬氧化物半導體製程設計並實現,鎖相迴路包含考畢子壓控振盪器、相位頻率偵測器、電荷幫浦、迴路濾波器、兩級電流模式除頻器及四級單相位時序除頻器。此電路有迴路振盪之現象,但通過外接二階濾波器,使其有成功鎖定頻率,如何除錯將在本章說明。電路晶片面積1.06 × 0.8 mm2,模擬頻率範圍為9.3 GHz至10.8 GHz,而量測頻率範圍為9.49 GHz至9.52 GHz,輸出功率約為-3 dBm,相位雜訊在1 MHz頻率偏移時為-96 dBc/Hz,電路直流總功耗為60.4 mW。此外在本章還探討迴路頻寬對於鎖相迴路之相位雜訊的影響。
第三章採用具有低相位雜訊低抖動優勢的鎖頻迴路架構,首先介紹次諧波注入鎖定技術,通過使用變壓器耦合的架構,可使得注入鎖定振盪器擁有更好的特性。本次設計之鎖頻迴路並無除頻器,使得整體架構較為簡單且達到低直流功耗的效果,在研製過程中使用理論計算線性模型,進行模擬分析鎖頻迴路的穩定度以及相位雜訊與抖動量的評估,來藉此優化整體相位雜訊及抖動量。電路實現於台積電65 nm CMOS製程,晶片面積為1 × 0.7 mm2,量測鎖定頻率範圍為30 GHz至36.6 GHz,輸出功率平均約為-9 dBm,相位雜訊在1 MHz頻率偏移時為-130.3 dBc/Hz,抖動量積分範圍由1 kHz到40 MHz為8.7 fs,四相位誤差及振幅誤差分別為0.9˚及0.43 dB,電路直流總功耗為31.3 mW。
第四章介紹無除頻器頻率追蹤迴路之W頻段次諧波注入鎖定四相位壓控振盪器,首先介紹理論模型及轉移函數,接著利用ADS(advance design system)軟體進行模擬分析鎖頻迴路,能夠有效率的分析鎖頻迴路系統的開迴路及閉迴路響應。此外,利用線性模型分析比較各種結構頻率合成器之相位雜訊及抖動量。電路實現於台積電 40 nm CMOS製程,晶片面積為0.982 × 0.86 mm2,模擬振盪器頻率範圍為91.6 GHz至96.7 GHz,量測振盪器頻率範圍為98.2 GHz至102.6 GHz,注入鎖定振盪器距載波偏移1 MHz的相位雜訊為-93.3 dBc/Hz。頻率相較模擬往高頻嚴重偏移,將會在本章節除錯。
摘要(英) In modern communication systems, in order to meet the demand for high data rate wireless communication the advantage of the high operating bandwidth of the radio frequency (RF) transceiver system is also apparent. The local oscillator (LO) source is very important as the role of upconversion/downconversion in the system. One challenge facing such systems is the strict phase-noise requirements of the local oscillator (LO). The LO phase noise adds directly to the received signal and results in limited overall system performance. The phase-locked loop (PLL) proposed in this paper can accurately provide a stable frequency. The injection locking technology can be employed to effectively reduce the phase noise. The total locking range is enhanced with a divider-less architecture to achieve a quadrature oscillator with wide locking range, low power consumption, low phase noise, and low jitter.
The Chapter 2 is the X-band multi-phase phase-locked loop. The PLL is using TSMC 0.18 μm CMOS process design and implementation. The building blocks of the presented PLL is composed of a QVCO, a phase-frequency detector, a charge pump, a loop filter and two-stage common-mode logic dividers and four-stage true single-phase clocking dividers. This circuit has the phenomenon of loop oscillation, but through the external second-order filter, it has a successful locking frequency. The debug for the proposed PLL is also presented in this chapter with the simulated results. The chip size is 1.06 × 0.8 mm2. The simulated frequency is 9.3 GHz to 10.8 GHz. The measured frequency is from 9.49 GHz to 9.52 GHz. The output power is close to -3 dBm. The measured phase noise is -96 dBc/Hz at 1-MHz offset. The total DC power consumption is 60.4 mW. In addition, the effect of loop bandwidth is also addressed to improve the phase noise of the PLL.
In Chapter 3, a subharmonic-injection locked frequency-locked loop with the advantages of low phase noise and low jitter is adopted. The subharmonic-injection locking technology is introduced. By using the transformer coupling architecture, the injection locking oscillator has better performance. The frequency locking loop is designed using divider-less loop, the overall phase noise and jitter can be properly designed using the presented linear model of the frequency-locked loop, and the design of the presented subharmonic-injection frequency locking loop is completely presented with the simulated results to further reduce the output phase noise and jitter. The circuit is designed using TSMC 65 nm CMOS process, the chip size is 1 × 0.7 mm2. The measured overall frequency locking range is from 30 GHz to 36.6 GHz. The average output power is about -9 dBm. The phase noise is -130.3 dBc/Hz at 1-MHz offset. The RMS jitter (integrated from 1 kHz to 40 MHz) is 8.7 fs. The phase error and amplitude error are 0.9˚ and 0.43 dB, respectively, and the total DC power consumption is 31.3 mW.
In Chapter 4, we introduce the W-band subharmonic injection locked quadrature VCO with divider-less frequency tracking loop. First, we introduce the theoretical model and transfer function. Then we use ADS (advance design system) software to simulate and analyze the frequency locking loop, which can effectively analyze the open loop and closed loop response of the frequency locking loop system. In addition, the theoretical model is used to analyze and compare the phase noise and jitter of various structure frequency synthesizers. The circuit is using TSMC 40 nm CMOS process. The chip size is 0.982 × 0.86 mm2. The simulated VCO frequency is 91.6 GHz to 96.7 GHz. The measured VCO frequency is 98.2 GHz to 102.6 GHz. The phase noise is - 93.3 dBc/Hz at 1-MHz offset. If the frequency is seriously offset from the analog to the high frequency, it will be debugged in this chapter.
關鍵字(中) ★ CMOS
★ 壓控振盪器
★ 鎖相迴路
★ 鎖頻迴路
★ 注入鎖定
關鍵字(英) ★ CMOS
★ VCO
★ PLL
★ FLL
★ Injection-locked
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 論文架構 3
第二章 X頻段多相位鎖相迴路 5
2.1 簡介 5
2.2 電路設計及分析 6
2.2.1 電路之基本架構 6
2.2.2 壓控振盪器 7
2.2.3 除頻器 10
2.2.4 相位頻率偵測器與電荷幫浦 14
2.2.5 迴路濾波器與穩定性分析[48] 18
2.2.6 整合鎖相迴路系統模擬與分析 22
2.3 電路實現及實驗結果與討論 25
2.3.1 鎖相迴路量測結果 27
2.3.2 鎖相迴路量測除錯 31
2.4 結論 39
第三章 具低功耗無除頻器頻率追蹤迴路自對準之Ka頻段次諧波注入鎖定四相位壓控振盪器 41
3.1 簡介 41
3.2 具鎖頻迴路自對準之次諧波注入鎖定壓控振盪器[69] 43
3.2.1 SILQFLL系統模擬[75] 45
3.2.1.1 鎖頻迴路線性模型 46
3.2.1.2 波德圖穩定度分析 50
3.2.1.3 閉迴路暫態分析 52
3.2.1.4 SILQFLL相位雜訊分析[75] 54
3.3 電路設計及分析 59
3.3.1 次諧波注入鎖定四相位壓控振盪器[78] 60
3.3.2 類比式低功耗高速頻率比較器[45] 65
3.3.3 差動雙轉單端放大器[98] 67
3.4 電路實現及實驗結果與討論 72
3.4.1 次諧波注入鎖定四相位壓控振盪器量測 74
3.4.2 鎖頻迴路量測 79
3.5 總結 84
第四章 具低功耗無除頻器頻率追蹤迴路自對準之W頻段次諧波注入鎖定四相位壓控振盪器 86
4.1 簡介 86
4.2 SILQFLL系統模擬 87
4.2.1. 波德圖穩定度模擬與分析 88
4.2.2. 閉迴路暫態分析 90
4.2.3. SILQFLL相位雜訊分析[75] 92
4.3 電路設計及分析 95
4.3.1. 次諧波注入鎖定四相位壓控振盪器[78] 96
4.3.2. 注入鎖定頻寬分析[36] 99
4.3.3. 脈衝產生器 103
4.3.4. 類比式低功耗高速頻率比較器[45] 107
4.3.5. 差動雙轉單端放大器 110
4.4 SILQFLL電路實現及實驗結果與討論 112
4.4.1. 次諧波注入鎖定四相位壓控振盪器量測 114
4.4.2. 次諧波注入鎖定四相位壓控振盪器頻率偏移除錯 119
4.5 總結 124
第五章 結論 126
參考文獻 128
參考文獻 [1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.2113, Aug. 2009.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition,” IEEE Int. Symp. on VLSI Design, Automation and Test, Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[10] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[11] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[12] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[13] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[14] D. Shin and K. J. Koh, "An Injection Frequency-Locked Loop—Autonomous Injection Frequency Tracking Loop With Phase Noise Self-Calibration for Power-Efficient mm-Wave Signal Sources," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 825-838, March 2018.
[15] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[16] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-µm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[17] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[18] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[19] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[20] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[21] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[22] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[23] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[24] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[25] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[26] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[27] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[28] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[29] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[30] S. Choi, S. Yoo, and J. Choi, “A 185 fsrms -integrated-jitter and −245 dB FOM PVT-robust ring-VCO-based injection-locked clock multiplier with a continuous frequency-tracking loop using a replica-delay cell and a dual-edge phase detector,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2016, pp. 194–195.
[31] J.-C. Chien et al., “A pulse-position-modulation phase-noise-reduction technique for a 2-to-16 GHz injection-locked ring oscillator in 20 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2014, pp. 52–53.
[32] Y.-C. Huang and S.-I. Liu, “A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417–428, Feb. 2013.
[33] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid State Circuits, vol. 39, no. 9, pp. 1415 1424, Sep. 2004
[34] G. Reddy Gangas ani, P. Kinget, “Injection-lock dynamics in non-harmonic oscillators,” Circuits and Systems 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, pp. 4 1678, 2006.
[35] A. Mirzaei and H. Darabi, “Mutual pulling between two oscillators,” IEEE J. Solid State Circuits, vol. 49, no. 2, pp. 360 372, Feb. 2014.
[36] Xuqiang Zheng, Fangxu Lv, Lei Zhou, Danyu Wu, Jin Wu, Chun Zhang, Woogeun Rhee and Xinyu Liu, “Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.1651-1664, June. 2020.
[37] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm wave applications,” IEEE J. Solid State Circuits, 46, no. 11, pp.2635-2649, Nov. 2011.
[38] C.-Y. Wu, M. C. Chen, and Yi Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18 µ m CMOS for V-Band applications,” IEEE Trans. Microw Theory Tech., 57, no. 7, pp. 1629-1636, Jul. 2009.
[39] C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[40] Y. C. Huang and S. I. Liu, “A 2.4 GHz subharmonically injection locked PLL with self-calibrated injection timing,” IEEE J. Solid State Circuits, vol. 48, no. pp. 417-428, Feb. 2013.
[41] F. Liang and K. J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[42] P.-H. Feng, and S.-H. Liu, “A Current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[43] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTTS Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[44] Hong-Yeh Chang, Chun-Ching Chan, Ian Yi-En Shen, Yen-Liang Yeh, Shu-Yan Huang, "Design and Analysis of CMOS Low Phase Noise Low Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique, " IEEE Trans. Microw. Theory Tech., vol. 64, pp. 4632-4645, 2016.
[45] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, " 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100-103.
[46] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[47] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[48] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
[49] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[50] Akshay Visweswaran, Robert Bogdan Staszewski, and John R. Long, “A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014
[51] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[52] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[53] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[54] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[55] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[56] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[57] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[58] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[59] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10- kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[60] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[61] Jeng-Han Tsai, Chia-Hsiang Chao, and Hung-Da Shih, “A X-band Fully Integrated CMOS Frequency Synthesizer,” in Proc. Asia-Pacific Microw. Con., Dec. 2012.
[62] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國 105 年。
[63] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” IEEE Communications and Networking in China (CHINACOM), pp. 276–280, Aug. 2013.
[64] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[65] Jeng-Han Tsai, Chin-Yi Hsu, and Chia-Hsiang Chao, “An X-Band 9.75/10.6 GHz Low-Power Phase-Locked Loop using 0.18-μm CMOS Technology,” Proceedings of the 10th European Microwave Integrated Circuits Conference, Sept. 2015.
[66] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A Dual-mode Signal Generator using PLL for X-band Radar Sensor Applications,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sept. 2017.
[67] Hamed Alsuraisry, Chun-Hin Yim, Jen-Hao Cheng, Jeng-Han Tsai, Tian-Wei Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in Proc. Asia-Pacific Microw. Con., Dec. 2015.
[68] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5 10-GHz clock multiplier unit with 0.22 ps RMS jitter in standard 0.18-μm CMOS,” IEEE J. Solid State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[69] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTT S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[70] F. Liang and K. J. Hsiao, “An injection locked ring PLL with self aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[71] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[72] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection locked oscillator with a highly digital tuning Loop,” IEEE J. Solid State Circuits, vol. 44, pp. 1391-1400, May 2009.
[73] I T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh, and H. H. Hsieh, “A divider less sub-harmonically injection-locked PLL with self-adjusted injection timing” IEEE Int. Solid State Circuits Conf, Tech. Dig., pp. 414-415, Feb. 2013.
[74] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[75] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[76] H. T. Bui et al., “Design of a high-speed differential frequency tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no.4, pp. 766-774, Apr. 2008.
[77] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[78] 李昇洺,V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[79] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback,” 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100–103.
[80] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage- ontrolled oscillator with FLL self-alignment technique,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.
[81] H.-Y. Chang, C.-C. Chan, I. Y.-E. Shen, Y.-L. Yeh, S.-Y. Huang, "Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique", IEEE Trans. Microw. Theory Techn., vol. 64, pp. 4632–4645, 2016.
[82] H.-Y. Chang, C.-C. Chan, S.-M. Li, H.-N. Yeh, I. Y.-E. Shen, and G.-L. Huang, “Design and analysis of CMOS low phase noise low quadrature error V-band sub-harmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 06, pp. 2851–2866, June 2018.
[83] D. Shin, S. Raman and K. J. Koh, “A mixed-mode injection frequency-locked loop for self-calibration of injection locking range and phase noise in 0.13μm CMOS,” 2016 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 50–51.
[84] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324–325.
[85] H.-S. Yang, I. Y.-E. Shen, and H.-Y. Chang, “A K-band CMOS low-phase-noise sub-harmonically injection-locked QVCO with divider-less frequency-tracking loop,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, June 2019, pp. 2–7.
[86] J. Zhang, Y. Peng, H. Liu, Yunqiu, C. Zhao and K. Kang “A 21.7-to-41.7-GHz injection-locked LO generation with a narrowband low-frequency input for multiband 5G communications,” IEEE Trans. Microw. Theory Techn., Early Access Article, 2019.
[87] D. Dunwell and A. C. Carusone, “Modeling oscillator injection locking using the phase domain response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2823–2833, Nov. 2013.
[88] S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[89] H.-Y. Chang and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[90] T. Y. Chang, C. S. Wang and C. K. Wang, "A low power W-band PLL with 17-mW in 65-nm CMOS technology," IEEE Asian Solid-State Circuits Conference Tech. Dig., Nov. 2012, pp. 81-84.
[91] S. Kang, J. C. Chien and A. M. Niknejad, "A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2390-2404, Oct. 2014.
[92] X. Yi, Z. Liang, G. Feng, C. C. Boon and F. Meng, "A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, 2016, pp. 122-125.
[93] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[94] Kwangwon Park, Dongkyo Kim, Iljin Lee, and Sanggeun Jeon, “W-Band Injection-Locked Frequency Octupler Using a Push–Push Output Structurey,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 12, pp. 822-825, Dec. 2019.
[95] Yue Chao, Lianming Li, and Howard Cam Luong, “An 86-to-94.3GHz Transmitter with 15.3dBm Output Power and 9.6% Efficiency in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 346–348.
[96] Zhiqiang Huang and Howard C. Luong, “An 82–107.6-GHz Integer-N ADPLL Employing a DCO With Split Transformer and Dual-Path Switched-Capacitor Ladder and a Clock-Skew-Sampling Delta–Sigma TDC,” IEEE J. Solid-State Circuits, vol. 54, no. 2, pp.358-367, Feb. 2019.
[97] Kai-Wen Tan, Ta-Shun Chu, and Shawn S. H. Hsu, “A 76.2–89.1 GHz Phase-Locked Loop With 15.6% Tuning Range in 90 nm CMOS for W-Band Applications,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 8, pp. 538-540, Aug. 2015.
[98] 楊瀚森,微波及毫米波低相位雜訊鎖相迴路與無除頻器次諧波注入鎖定四相位鎖頻迴路,國立中央大學電機工程研究所碩士論文,民國108年。
[99] 沈毅恩,K頻段互補式金氧半場效電晶體低功耗低相位雜訊四相位時脈產生器之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[100] S. Mondal, R. Singh, and J. Paramesh, “A reconfigurable 28/37 GHz hybrid-beamforming MIMO receiver with inter-band carrier aggregation and RF-domain LMS weight adaptation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 72–74.
[101] B. Ustundag, K. Kibaroglu, M. Sayginer, and G. Rebeiz, “A wideband high-power multi-standard 23–31 GHz 2×2 quad beamformer chip in SiGe with >15 dBm OP1dB per channel,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2018, pp. 60–63.
[102] Z. Chen et al., “A 256-QAM 39 GHz dual-channel transceiver chipset with LTCC package for 5G communication in 65 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 1476–1479.
[103] B. Sadhu et al., “A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3373–3391, Dec. 2017.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明