博碩士論文 106521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.238.248.103
姓名 楊怡彬(Yi-Bin Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用負偏壓於Ka頻段互補式金氧半導體單刀雙擲切換器暨應用新型串並結構於X頻段氮化鎵切換器之研製
(Implementations on Ka-band CMOS Single Pole Double Throw Switches with Negative Bias Technique and X-band GaN Switches with Novel Series-Shunt Topology)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此論文採用tsmcTM CMOS 90 nm製程設計Ka頻段單刀雙擲切換器,以及採用WIN GaN 0.25μm製程設計X頻段之單刀雙擲切換器與單刀單擲切換器,主要研究方向以高線性度、低損耗、寬頻為設計目標。
第一顆電路為Ka頻段CMOS單刀雙擲切換器,使用的結構為串並連結構,使用兩組反向器,一組用來控制發射接收模式,另一組用來定義電位,與前一組反向器的控制電壓在閘極端形成負偏壓與零電壓。電路之插入損耗在18-44 GHz為2.05 ~ 2.93 dB,在18-44 GHz隔離度為21.1-35.2 dB,由於前級功率放大器(pre-amplifier)無法在高頻達到20 dBm之輸出,只能以IIP3反推確定IP1dB大於20 dBm,最後由於負偏壓係使用反向器建構而成,故存在約3 mW之直流功耗。
第二顆電路為X頻段GaN/SiC單刀雙擲切換器,為了解決50 四分之一波長傳輸線面積過大之問題,提出一新型單刀雙擲切換器,所用結構會在天線端往隔離端看過去產生一並聯電容電感結構,同時天線端往傳輸端看過去具有三組並聯電容電感共振結構的匹配網絡。電路插入損耗在8-12 GHz為1.2-2.6 dB,在8-12 GHz隔離度皆大於45 dB,由於前級功率放大器無法在達到大於30 dBm之輸出,只能確定IP1dB大於30 dBm。
第三顆電路為X頻段GaN/SiC單刀單擲切換器,有鑑於從第二顆晶片量測結果與模擬結果,推斷電晶體閉電容模型操作在極負偏壓下存在實際值比模型小約50%,本電路使用相對共振結構較穩定之行進波結構,目的為在滿足設計目標同時驗證推斷是否正確,從量測結果證實第二顆晶片所採用的修正是正確的。電路插入損耗在8-12 GHz為0.52-0.72 dB,在8-12 GHz隔離度皆大於4 2 dB,IP1dB由於前級功率放大器無法在高頻達大於到30 dBm之輸出,只能確定IP1dB大於30 dBm。
摘要(英) This paper adopted tsmcTM CMOS 90 nm process to design Ka-band single pole double throw (SPDT) switch. Meanwhile, the author uses the WINTM GaN/SiC 0.25 μm process to design X-band SPDT switch and single pole single throw (SPST) switch. The purposes of this research are aimed at the performances of high linearity, low loss and wide frequency.
The first circuit is a Ka-band CMOS SPDT switch using a series-shunt topology. In this SPDT, a pair of inverters with complementary outputs are used to control the transmit and receive modes. Meanwhile, one of inverter is used to define the voltage level. The control voltage of the previous of inverter forms a negative bias and a zero voltage at both gate terminals. The proposed SPDT achieves an insertion loss of 2.05-2.93 dB from 18-44 GHz with isolation of 21.1-35.2 dB. Since the pre-amplifier cannot deliver power level up to 20 dBm for testing, IP1dB can only be estimated by IIP3 backward extrapolation to be greater than 20 dBm. The inverter pairs consume a DC power of 3 mW.
The second circuit is a GaN/SiC X-band SPDT switch. A novel SPDT topology is proposed to overcome the large occupied area if using 50  quarter-wavelength transmission line for isolation design. The proposed topology exhibits a shunt capacitor and inductor resonator from common port to isolation port. Meanwhile, it shows a resonant matching network that includes three parallel capacitors (two Coff capacitors and one matching capacitor) and inductor structures from common port to transmission port. This particular matching network provides better isolation than that of conventional SPDT topology. The proposed SPDT achieves an insertion loss of 1.2 ~ 2.6 dB from 8-12 GHz with isolation better than 45 dB. Since the pre-power amplifier cannot achieve an output level up to 30 dBm, it can only be estimated that IP1dB is larger than 30 dBm.
The third circuit is an X-band SPST switch. From the measured results of the second chip, it can be inferred that the value of off-capacitance is 50% less than device model under extremely negative bias condition. This SPST switch adopts a traveling wave topology to verify the model accuracy. The proposed SPST achieves an insertion loss of 0.52-0.72 dB from 8-12 GHz with isolation better than 42 dB. Since the pre-power amplifier cannot achieve an output up to 30 dBm, it can only be estimated that IP1dB is greater than 30 dBm.
關鍵字(中) ★ 互補式金氧半導體
★ 氮化鎵
★ 切換器
★ 混頻器
★ 功率放大器
★ Ka 頻段
★ X 頻段
關鍵字(英) ★ CMOS
★ GaN
★ Switch
★ Mixer
★ PA
★ Ka Band
★ X Band
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節敘述 2
第二章 使用反向器產生相對負偏壓實現負偏壓技術之Ka頻段之CMOS 90 nm製程串並結構單刀雙擲切換器 3
2-1 前言 3
2-2 電路架構及原理 4
2-2-1 閘極負偏壓技術 6
2-2-2 基底負偏壓技術 8
2-3 量測與模擬結果 13
2-4 結果與討論 19
第三章 0.25 μm GaN 製程設計之X頻段類串並結構之單刀雙擲切換器 20
3-1 前言 20
3-2 電路架構及原理 21
3-3 設計流程 25
3-3-1 獲取Q值 27
3-3-2 三維(導通電阻、共振電容、3dB頻寬)座標圖 27
3-3-3 挑選電晶體 28
3-3-3-1功率承受能力分析 28
3-3-3-2尺寸挑選 29
3-3-4 頻寬轉換 31
3-3-5 共振電容挑選 32
3-3-6 設計單刀單擲切換器 32
3-3-7 單刀雙擲切換器 33
3-4 量測與模擬結果 34
3-5 結果與討論 43
第四章 0.25 μm GaN 製程設計之X頻段行波式單刀單擲切換器 44
4-1 前言 44
4-2 電路架構及原理 45
4-2-1 功率承受能力分析 46
4-2-2 行進波技術 48
4-3 量測與模擬結果 51
4-4 結果與討論 55
第五章 結論 56
5-1 電路總結 56
5-2 未來期許及研究方向 56
附錄A 0.25 μm GaN 製程設計之X頻段雙平衡次諧波電阻式混頻器 57
A-1 前言 57
A-2 電路架構及原理 58
A-2-1 巴倫設計 61
A-3 電路模擬與量測考量 64
A-4 結果與討論 71
附錄B 0.25 μm GaN 製程設計之X頻段使用線性化技術之功率放大器 72
B-1 前言 72
B-2 電路架構及原理 72
B-3 量測與模擬結果 77
B-4 結果與討論 82
References 83
參考文獻 [1] M. J. Schindler and A. Morris, "DC-40 GHz and 20-40 GHz MMIC SPDT switches," IEEE Transactions on Electron Devices, vol. 34, no. 12, pp. 2595-2602, 1987.
[2] D. C. W. Lo et al., "Novel monolithic multifunctional balanced switching low-noise amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2629-2634, 1994.
[3] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, "Q-band high isolation GaAs HEMT switches," in GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996, 1996, pp. 289-292.
[4] H. Mizutani, N. Funabashi, M. Kuzuhara, and Y. Takayama, "Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1597-1603, 1998.
[5] F. Steinhagen, H. Massler, W. H. Haydl, A. Hulsmann, and K. Kohler, "Coplanar W-Band SPDT and SPTT Resonated PIN Diode Switches," in 1999 29th European Microwave Conference, 1999, vol. 2, pp. 53-56.
[6] M. Hieda et al., "High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2453-2458, 2001.
[7] Z. Gu, D. Johnson, S. Belletete, and D. Fryklund, "Low insertion loss and high linearity PHEMT SPDT and SP3T switch ICs for WLAN 802.11 a/b/g applications," in 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, 2004, pp. 505-508.
[8] K. Lin, T. Wen-Hua, C. Ping-Yu, C. Hong-Yeh, W. Huei, and W. Ruey-Beei, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, 2004.
[9] Y. Mei-Chao, L. Ren-Chieh, T. Zuo-Min, and W. Huei, "A miniature low-insertion-loss, high-power CMOS SPDT switch using floating-body technique for 2.4- and 5.8-GHz applications," in 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers, 2005, pp. 451-454.
[10] L. Zhenbiao and O. K. K, "15-GHz fully integrated nMOS switches in a 0.13-/spl mu/m CMOS process," IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2323-2328, 2005.
[11] Y. Mei-Chao, T. Zuo-Min, L. Ren-Chieh, K. Lin, C. Ying-Tang, and W. Huei, "Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 31-39, 2006.
[12] C. Cheng, S. Lin, C. Wei, H. Chiu, and R. Yang, "A High Isolation 0.15μm Depletion-Mode pHEMT SPDT Switch Using Field-Plate Technology," in 2007 Asia-Pacific Microwave Conference, 2007, pp. 1-4.
[13] J. P. Comeau, J. D. Cressler, and M. Mitchell, "Design and Layout Techniques for the Optimization of nMOS SPDT Series-Shunt Switches in a 130nm SiGe BiCMOS Technology," in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 457-460.
[14] W. L. Kuo, J. P. Comeau, J. M. Andrews, J. D. Cressler, and M. A. Mitchell, "Comparison of Shunt and Series/Shunt nMOS Single-Pole Double-Throw Switches for X-Band Phased Array T/R Modules," in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2007, pp. 249-252.
[15] V. Alleva et al., "High Power Microstrip GaN-HEMT Switches for Microwave Applications," in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 194-197.
[16] A. Bettidi et al., "High power GaN-HEMT microwave switches for X-Band and wideband applications," in 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 329-332.
[17] J. Janssen et al., "X-Band GaN SPDT MMIC with over 25 Watt Linear Power Handling," in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 190-193.
[18] J. P. B. Janssen, M. v. Heijningen, G. Provenzano, G. C. Visser, E. Morvan, and F. E. v. Vliet, "X-Band Robust AlGaN/GaN Receiver MMICs with over 41 dBm Power Handling," in 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, 2008, pp. 1-4.
[19] B. Min and G. M. Rebeiz, "Ka-Band Low-Loss and High-Isolation Switch Design in 0.13μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 6, pp. 1364-1371, 2008.
[20] T. K. Thrivikraman, W. L. Kuo, J. P. Comeau, and J. D. Cressler, "The Impact of Technology Node Scaling on nMOS SPDT RF Switches," in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 374-377.
[21] P. Park, D. H. Shin, and C. P. Yue, "High-Linearity CMOS T/R Switch Design Above 20 GHz Using Asymmetrical Topology and AC-Floating Bias," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 4, pp. 948-956, 2009.
[22] P. K. Saha, J. P. Comeau, W. L. Kuo, and J. D. Cressler, "A K-Band nMOS SPDT Switch and Phase Shifter Implemented in 130nm SiGe BiCMOS Technology," in 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2009, pp. 1-4.
[23] H. Chang and C. Chan, "A Low Loss High Isolation DC-60 GHz SPDT Traveling-Wave Switch With a Body Bias Technique in 90 nm CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 82-84, 2010.
[24] G. Chen et al., "Cold-mode characteristics of 90 nm CMOS device with negative body bias and highly linear millimeter-wave switch applications," in 2010 Asia-Pacific Microwave Conference, 2010, pp. 554-557.
[25] N. Billström, J. Nilsson, A. Tengs, and N. Rorsman, "High performance GaN front-end MMICs," in 2011 6th European Microwave Integrated Circuit Conference, 2011, pp. 348-351.
[26] M. Parlak and J. F. Buckwalter, "A 2.5-dB Insertion Loss, DC-60 GHz CMOS SPDT Switch in 45-nm SOI," in 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011, pp. 1-4.
[27] N. A. Shairi, B. H. Ahmad, M. Z. A. A. Aziz, and A. F. Osman, "SPDT switch with defected ground structure for time division duplex switching in wireless data communication system," in 2011 IEEE International RF & Microwave Conference, 2011, pp. 238-241.
[28] K. Hettak, T. Ross, N. Irfan, D. Gratton, M. C. E. Yagoub, and J. Wight, "High-power broadband GaN HEMT SPST/SPDT switches based on resonance inductors and shunt-stacked transistors," in 2012 7th European Microwave Integrated Circuit Conference, 2012, pp. 215-218.
[29] M. H. Misran, N. A. Shairi, G. H. The, and M. A. M. Said, "Design and performance analysis of single biasing based SPDT switch for wireless data communications," in 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 2012, pp. 363-366.
[30] C. H. J. Poh, R. L. Schmid, J. D. Cressler, and J. Papapolymerou, "An X-band to Ka-band SPDT switch using 200 nm SiGe HBTs," in 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2012, pp. 183-186.
[31] D. Shin, D. Kang, and G. M. Rebeiz, "A 0.01–8-GHz (12.5 Gb/s) 4×4 CMOS Switch Matrix," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 381-386, 2012.
[32] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 2014, pp. 195-198.
[33] S. Dey and S. K. Koul, "Reliability Analysis of Ku-Band 5-bit Phase Shifters Using MEMS SP4T and SPDT Switches," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 3997-4012, 2015.
[34] B. Yu et al., "A DC-50 GHz SPDT switch with maximum insertion loss of 1.9 dB in a commercial 0.13-μm SOI technology," in 2015 International SoC Design Conference (ISOCC), 2015, pp. 197-198.
[35] X. Bi, M. A. Arasu, Y. Zhu, and M. Je, "A Low Switching-Loss W-Band Radiometer Utilizing a Single-Pole-Double-Throw Distributed Amplifier in 0.13μm SiGe BiCMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 226-238, 2016.
[36] N. Hansen, C. Rave, B. Rohrdantz, and A. F. Jacob, "A compensated dual-band SPDT switch for radar duplexers at S- and X-band," in 2016 46th European Microwave Conference (EuMC), 2016, pp. 699-702.
[37] H. Mizutani, R. Ishikawa, and K. Honjo, "InGaAs MMIC SPST Switch Based on HPF/LPF Switching Concept With Periodic Structure," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, pp. 2863-2870, 2016.
[38] D. P. Nguyen, A. Pham, and F. Aryanfar, "A K-Band High Power and High Isolation Stacked-FET Single Pole Double Throw MMIC Switch Using Resonating Capacitor," IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 696-698, 2016.
[39] G. Polli, M. Palomba, S. Colangeli, A. Salvucci, and E. Limiti, "Resistive bias network for optimized isolation in SPDT switches," in 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 2016, pp. 1-4.
[40] A. Tang et al., "A W-Band 65nm CMOS/InP-hybrid radiometer & passive imager," in 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-3.
[41] L. Wenju, M. Kaixue, and M. Shouxian, "A Ku-band high-isolation SPDT switch in 0.35um SiGe BiCMOS technology," in 2016 International Symposium on Integrated Circuits (ISIC), 2016, pp. 1-4.
[42] H. Al-Rubaye and G. M. Rebeiz, "W -Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS," IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2277-2291, 2017.
[43] W. Lai, C. Chou, S. Huang, T. Huang, and H. Chuang, "75–110-GHz W -band High-Linearity Traveling-Wave T/R Switch by Using Negative Gate/Body-Biasing in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 488-490, 2017.
[44] Z. Liang, C. Xu, D. Xianjin, and L. Xinxin, "Design of K/Ka-band passive HEMT SPDT switches with high isolation," in 2017 China Semiconductor Technology International Conference (CSTIC), 2017, pp. 1-3.
[45] R. Shu and Q. J. Gu, "A Transformer-Based V -Band SPDT Switch," IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 278-280, 2017.
[46] R. Shu, J. Li, A. Tang, B. J. Drouin, and Q. J. Gu, "Coupling-Inductor-Based Hybrid mm-Wave CMOS SPST Switch," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 4, pp. 367-371, 2017.
[47] B. Yu et al., "Ultra-Wideband Low-Loss Switch Design in High-Resistivity Trap-Rich SOI With Enhanced Channel Mobility," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3937-3949, 2017.
[48] L. Zhao, W. Liang, J. Zhou, and X. Jiang, "Compact 35–70 GHz SPDT Switch With High Isolation for High Power Application," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 485-487, 2017.
[49] R. Akmal, M. S. Arif, M. Saqib, and S. A. Imran, "Design Considerations for GaN based X-Band, High Power and High Isolation SPDT T/R Switch," in 2018 IEEE MTT-S Latin America Microwave Conference (LAMC 2018), 2018, pp. 1-3.
[50] S. Jang, S. Kong, H. Lee, J. Park, K. Kim, and K. Lee, "28 GHz 1.8 dB Insertion Loss SPDT Switch with 24 dB Isolation in 65 nm CMOS," in 2018 48th European Microwave Conference (EuMC), 2018, pp. 835-838.
[51] F. Meng, K. Ma, K. S. Yeo, and S. Xu, "Monolithic Sub-Terahertz SPDT Switches With Low Insertion Loss and Enhanced Isolation," IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 2, pp. 192-200, 2018.
[52] P. Zhou et al., "A W-Band Low Loss, High Power SPDT Switch Using Reverse Saturated 0.13μm SiGe HBTs," in 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2018, pp. 1-3.
[53] K. Ma, Y. Wang, W. Li, and Y. Chen, "A Novel Compact Self-Packaged SPDT Switchable BPFs Based on SISL Platform," IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 7239-7249, 2019.
[54] Y. Ping-Chun, L. Wei-Cheng, and C. Hwann-Kaeo, "Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun," IEEE Microwave and Wireless Components Letters, vol. 15, no. 2, pp. 62-64, 2005.
[55] C. Yeh et al., "A 3.5 GHz antiparallel diode pair mixer in GaN-on-Si HEMT technology," in 2012 4th International High Speed Intelligent Communication Forum, 2012, pp. 1-4.
[56] O. Habibpour, J. Vukusic, and J. Stake, "A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 841-847, 2013.
[57] R. Michaelsen, T. Johansen, K. Tamborg, and V. Zhurbenko, "A passive x-band double balanced mixer utilizing diode connected SiGe HBTs," in 2013 European Microwave Integrated Circuit Conference, 2013, pp. 188-191.
[58] T. T. Nguyen, K. Fujii, and A. Pham, "Highly Linear Distributed Mixer in 0.25-μm Enhancement-Mode GaAs pHEMT Technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1116-1118, 2017.
[59] C. Lu, A. H. Pham, M. Shaw, and C. Saint, "Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 11, pp. 2320-2328, 2007.

[60] P. Choi et al., "A 5.9-GHz Fully Integrated GaN Frontend Design With Physics-Based RF Compact Model," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1163-1173, 2015.
[61] P. Dennler, F. v. Raay, M. Seelmann-Eggebert, R. Quay, and O. Ambacher, "Modeling and realization of GaN-based dual-gate HEMTs and HPA MMICs for Ku-band applications," in 2011 IEEE MTT-S International Microwave Symposium, 2011, pp. 1-4.
[62] R. Santhakumar et al., "Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 2059-2063, 2011.
[63] D. Kim, D. Lee, S. Sim, L. Jeon, and S. Hong, "An X-Band Switchless Bidirectional GaN MMIC Amplifier for Phased Array Systems," IEEE Microwave and Wireless Components Letters, vol. 24, no. 12, pp. 878-880, 2014.
[64] A. Biondi, S. D. Angelo, F. Scappaviva, D. Resca, and V. A. Monaco, "Compact GaN MMIC T/R module front-end for X-band pulsed radar," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), 2016, pp. 297-300.
[65] M. v. Heijningen, J. A. Hoogland, A. P. d. Hek, and F. E. v. Vliet, "6–12 GHz double-balanced image-reject mixer MMIC in 0.25μm AlGaN/GaN technology," in 2014 9th European Microwave Integrated Circuit Conference, 2014, pp. 65-68.
[66] D. M. J. W. Pozar, "Microwave engineering," 2005.
[67] 徐冠忠, "應用於C/X頻段之互補式金氧半導體低功耗寬頻接收機前端電路暨X頻段氮化鎵發射機之研製," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[68] 傅奕文, "應用變壓器耦合與負偏壓技術於Ka頻段單刀雙擲開關器暨應用電容共振技術於X/Ka頻段III-V族開關器之研製," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[69] 詹凱鈞, "應用於C頻段之互補式金氧半導體低相位雜訊C類壓控振盪器暨變壓器耦合四相位壓控振盪器暨利用F類壓控振盪器於C頻段之整數型鎖相迴路暨X頻段III-V族高功率振盪器之研製," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[70] 賴畇茿, "應用於X/Ka頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X頻帶氮化鎵功率放大器之研製," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明