博碩士論文 106521152 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.117.229.193
姓名 萬禹辰(Yu-Chen Wan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁銦鎵/氮化鎵毫米波功率電晶體之製作與特性分析
(Fabrication and Characterization of AlInGaN/GaN Millimeter Wave Power Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主題為使用成長於矽基板之氮化鋁銦鎵/氮化鎵異質結構磊晶片製作毫米波功率電晶體,研究內容包括開發電子束微影T型閘極製程、空氣橋接製程、NH3表面處理製程以及基板對於元件的效應。此外,本研究亦測量元件之暫態與遲滯特性,觀察成長於高阻與低阻矽基板之元件的差異,並以X-射線繞射實驗分析元件特性與磊晶差排密度之關聯性。
為達到T型閘極製程高穩定性與高良率,此研究採用TDUR-P015/ Dilute ZEP-A7雙層光阻結構進行閘極足部與頭部的曝光,以改善ZEP-A7/LOR7A/ZEP-A7三層光阻結構中,頭部曝光劑量會影響足部曝光劑量,造成製程不穩定的窘境。此外,以PMGI_SF15阻劑作為空氣橋的犧牲層並搭配電鍍金的方式連接各個元件的源極,藉此達到高功率特性。
此研究中亦使用共平面波導(Coplanar Waveguide)圖形測試矽基板電阻率對於訊號的傳播損耗程度,在28 GHz頻率下,高阻基板與低阻矽基板訊號損耗分別為0.62 dB/mm與0.99 dB/mm,顯示矽基板阻值提升則有效降低毫米波段頻率的訊號損耗。然而,將成長於高阻與低阻矽基板之氮化鋁銦鎵/氮化鎵高電子遷移率電晶體磊晶片製作成閘極長度0.14 μm的元件進行分析,由去嵌化小訊號參數萃取結果顯示基板效應對於閘極寬度200 μm的元件影響不顯著,高阻與低阻基板元件之電流增益截止頻率(fT)分別為70與72 GHz,功率增益截止頻率(fmax)分別為91與93 GHz。由萃取之小訊號參數判斷,此微小差異應是由磊晶品質所造成,且觀察閘極寬度增加至800 μm的元件小訊號特性,其基板效應依然不顯著。但若取閘極寬度200 μm與800 μm於28 GHz下的MAG/MSG值,可觀察到高阻矽基板元件增益由12.35 dB降至7.14 dB,而低阻矽基板元件增益由12.66 dB降至6.16 dB,顯示低阻矽基板在閘極寬度增加時由於元件訊號損耗較為嚴重造成增益下降幅度較大。另外,藉由功率線性度量測得知高阻與低阻矽基板元件的三階截斷點輸出功率(OIP3)分別為27.8 dBm 與25.2 dBm,顯示高阻矽基板元件不僅有較低的訊號損耗,同時元件也有較好的的線性度表現。因此,基板電阻率對高頻功率性能(如最大可用增益和三階截斷點的輸出功率)具有深遠的影響,而直流與小信號特性主要取決於磊晶片質量和製程穩定性。
摘要(英) This thesis deals with the fabrication and characterization of AlInGaN/GaN-on-Si high electron mobility transistors (HEMTs) for millimeter wave applications. NH3 surface treatment, air-bridge process, and e-beam lithography for T-gate formation have been developed in this work. The correlation between epitaxial defects and device performance of the GaN HEMTs grown on high resistivity (HR) and low resistivity (LR) silicon substrates are also investigated.
The T-gate is formed by using a TDUR-P015/Dilute ZEP-A7 double-layer photoresist stack with head and foot exposed individually, resulting in highly stable and high yield T-gate GaN HEMTs as compared to the use of ZEP-A7/LOR7A/ZEP-A7 three-layer photoresist for the same. Additionally, PMGI_SF15 photoresist is used to fabricate the air-bridge to connect the source pads for power devices.
A systematic in-depth study has been carried out to investigate the high-frequency power performance of the devices grown on LR and HR silicon substrates. Transmission loss measurements at 28 GHz using coplanar waveguides on GaN/LR-Si and GaN/HR/Si indicate that the transmission loss is 0.99 dB/mm and 0.62 dB/mm, respectively. However, de-embedded AlInGaN/GaN HEMTs with a gate length of 0.14 μm and gate width of 200 μm fabricated on LR and HR silicon substrates exhibit almost similar small signal performance. The current gain cut-off frequency (fT) of the devices on LR-Si and HR-Si is 72 and 70 GHz, respectively. Whereas, the respective power gain cut-off frequency (fmax) is 93 and 91 GHz as extracted from the s-parameter measurements. The small differences in cut-off frequencies could be due to the variations in process parameters and/or slight differences in the epitaxial layer quality of the GaN HEMTs. It is further observed that substrate resistivity has insignificant influence on the small-signal performance for devices with different gate widths up to 800 μm. In contrast, both the substrate resistivity and the gate width substantially affect the power gain at high frequency. The MAG/MSG of GaN-on-HR-Si HEMTs measured at 28 GHz reduces from 12.35 dB to 7.14 dB as the gate width increases from 200 μm to 800 μm. In contrast, the MAG/MSG of the devices grown on LR-Si reduces from 12.66 dB to 6.16 dB for the same change in gate width. Besides, the output power third-order intercept point (OIP3) of the devices on HR-Si and LR-Si measured at 6 GHz is 27.8 dBm and 25.2 dBm, respectively. This might also result from the effect of substrate resistivity. In conclusion, substrate resistivity has profound effects on high frequency power performance, whereas, the DC and small signal performance mostly depend on epitaxial quality and device fabrication process.
關鍵字(中) ★ 氮化鋁銦鎵/氮化鎵高電子遷移率電晶體
★ 氮化鎵成長於高/低阻矽基板
★ T型閘極
★ 空氣橋
關鍵字(英) ★ AlInGaN/GaN HEMTs
★ GaN on HR/LR silicon substrate
★ T-gate
★ Air-bridge
論文目次 論文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章  導論 1
1.1 前言 1
1.2 氮化鎵磊晶材料特性與發展現況 3
1.3 研究動機與論文架構 8
第二章 製程開發與元件製作流程 10
2.1 T型閘極製程開發 10
2.2 空氣橋製程開發 16
2.3 NH3電漿表面處理後特性優化 19
2.4 元件製作流程 20
2.5 本章總結 28
第三章  小訊號量測與參數萃取 29
3.1 量測系統介紹 29
3.1.1 CS與ISS校正 30
3.1.2 去嵌化(De-embedding) 32
3.2 小訊號電路模型 33
3.2.1 元件外部寄生參數萃取 33
3.2.2 元件內部本質參數萃取 37
3.2.3 史密斯與極座標圖驗證 39
3.3 本章總結 40
第四章  元件特性分析 41
4.1 直流特性分析 42
4.1.1 歐姆接觸特性 42
4.1.2 轉移及輸出特性 43
4.1.3 變溫蕭特基特性 47
4.1.4 遲滯效應與暫態輸出特性 49
4.1.5 崩潰特性 51
4.2 射頻特性分析 53
4.2.1 基板效應分析 53
4.2.2 小訊號量測特性 55
4.2.3 大訊號量測特性 63
4.2.4 線性度 68
4.3 本章總結 71
第五章  結論與未來展望 74
參考文獻 76
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N. M.Williams, A.Hanser, "High Breakdown Voltage Schottky Rectifier Fabricated on Bulk n-GaN Substrate," Solid-State Electronics, Vol. 50, Iss. 11-12, pp. 1744-1747, 2006.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[3] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastma, "Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures," Journal of Applied Physics, Vol. 85, No. 1, pp. 334-344, 2000.
[4] M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, "High Electron Mobility Lattice-Matched AlInN/GaN Field-Effect Transistor Heterostructures," Applied physics letters, Vol. 89, 062106, 2006.
[5] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, "AlGaN/AlN/ GaN High-Power Microwave HEMT," IEEE Electron Device Letters, Vol. 22, No. 10, pp.457-459, 2001.
[6] N. Ketteniss, L. Rahimzadeh Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R. H Jansen and A. Vescan1, "Study on Quaternary AlInGaN/GaN HFETs Grown on Sapphire Substrates," Semiconductor Science and Technology, Vol. 25, 075013, 2010.
[7] K. Makiyama, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, Y. Niida, Y. Kamada, K. Joshin, K. Watanabe and Y. Miyamoto, "Collapse-Free High Power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz," IEEE International Electron Devices Meeting, pp. 9.1.1-9.1.4, 2015.
[8] N. Kaminski, and O. Hilt, "SiC and GaN devices - wide bandgap is not all the same," IET Circuit Device & Systems, Vol. 8, Iss. 3, pp. 227-236, 2014
[9] A. Krost and A. Dadgar, "GaN-Based Devices on Si," Physica Status Solidi (a), Vol. 194, No. 2, pp. 361-375, 2002.
[10] A. Hierro, S. A. Ringe, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, "Hydrogen Passivation of Deep Levels in n–GaN," Applied physics letters, Vol. 77, No. 10, pp. 1499-1501, 2000.
[11] S.Yang, Z. Tang, K. Y. Wong, Y. S. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen, "High-Quality Interface in Al2O3/GaN/AlGaN/GaN MIS Structures With In Situ Pre-Gate Plasma Nitridation," IEEE Electron Device Letters, Vol. 34, No. 12, pp. 1497-1499, 2013.
[12] P. M. White, and R. M. Healy, "Improved Equivalent Circuit for Determination of MESFET and HEMT Parasitic Capacitances from Coldfet Measurements," IEEE microwave and guided wave letters, Vol. 3, No. 12, pp. 453-454, 1993.
[13] Jing Lu, Yan Wang, Long Ma, and Zhiping Yu, "A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs," Solid-State Electronics, Vol. 52, pp. 115-120, 2008.
[14] M. Berroth and R. Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 7, pp. 891-895, 1990.
[15] M. T. Yang, P. P. C. Ho, Y. J. Wang, T. J. Yeh, and Y. T. Chia, "Broadband Small-Signal Model and Parameter Extraction for Deep Sub-Micron Mosfets Valid up to 110 GHz," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 369-372, 2003.
[16] G. Crupi, D. Schreurs, A. Caddemi, I. Angelov, R. Liu, M. Germain, and W. D. Raedt, "Detailed Analysis of Parasitic Loading Effects on Power Performance of GaN-on-Silicon HEMTs," Solid-State Electronics, Vol. 53, Iss. 2, pp. 185-189, 2009.
[17] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, "Self-Heating in High-Power AlGaN-GaN HFETs," IEEE Electron Device Letters, Vol. 19, No. 3, pp. 89-91, 1998.
[18] S. Nuttinck, E. Gebara, J. Laskar, and H. M. Harris, "Study of Self-Heating Effects, Temperature-Dependent Modeling, and Pulsed Load-Pull Measurements on GaN HEMTs, " IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, pp. 2413-2420, 2001.
[19] B. Benbakhti, A. Soltani, K. Kalna, M. Rousseau, and J. C. D. Jaeger, "Effects of Heat on Performance Degradation in AlGaN/ GaN-Based Devices," IEEE Transactions on Electron Devices, Vol. 56, No. 10, pp. 2178-2185, 2009.
[20] M. Wang and K. J. Chen,"Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate Pumping, " IEEE Electron Device Letters, Vol. 32, No. 4, pp. 482-484, 2011.
[21] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, "Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs," IEEE Transactions on Electron Devices, Vol. 60, No. 10, pp. 3157-3165, 2013.
[22] J. Racko, J. Pecháček, M. Mikolášek, P. Benko, A. Grmanová, L. Harmatha, and J. Breza, "Trap-Assisted Tunneling in the Schottky Barrier," Radioengineering, Vol. 22, No. 1, pp. 240-244, 2013.
[23] M.Wang and K. J. Chen, "Off-State Breakdown Characterization in AlGaN/GaN HEMT Using Drain Injection Technique," IEEE Transactions on Electron Devices, Vol. 57, No. 7, pp. 1492-1496, 2010.
[24] H. Jiang, X. Li, J. Wang, L. Zhu, H. Wang, J. Liu, M. Wang, M. Yu, W. Wu, Y. Zhou, and G. Dai, "Source-Drain Punch-Through Analysis of High Voltage Off-State AlGaN/GaN HEMT Breakdown," Journal of Physics: Conference Series 864, 012023, 2017.
[25] W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, "Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors," Applied Physics Letters, Vol. 80, No. 17, pp. 3207-3209, 2002.
[26] T. T. Luong, F. Lumbantoruan, Y. Y. Chen, Y. T. Ho, Y. C. Weng, Y. C. Lin, S. Chang, and E. Y. Chang, "RF Loss Mechanisms In Gan-Based High-Electron-Mobility-Transistor," Physica Status Solidi (a), 1600944, 2017.
[27] H. Chandrasekar, M. J. Uren, M. A. Casbon, H. Hirshy, A. Eblabla, K. Elgaid, J. W. Pomeroy, P. J. Tasker, and M. Kuball, "Quantifying Temperature-Dependent Substrate Loss in GaN-on-Si RF Technology," IEEE Transactions on Electron Devices, Vol. 66, No. 4, pp. 1681-1687, 2019.
[28] O. Jardel, O. Jardel, F. D. Groote, T. Reveyrand, J. C. Jacquet, C. Charbonniaud, J. P. Teyssier, D. Floriot, and R. Quéré, "An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, pp. 2660-2669, 2007.
[29] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," IEEE Electron Device Letters, Vol. 31, No. 12, pp. 1383-1385, 2010.
[30] R. Wang, G. Li, J. Verma, B. S. Rodriguez, T. Fang, J. Guo, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. Xing, "220-GHz Quaternary Barrier InAlGaN/AlN/GaN HEMTs," IEEE Electron Device Letters, Vol. 32, No. 9, pp. 1215-1217, 2011.
[31] R. Wang, G. Li, G. Karbasian, J. Guo, B. Song, Y. Yue, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. G. Xing, "Quaternary Barrier InAlGaN HEMTs With fT/fmax of 230/300 GHz," IEEE Electron Device Letters, Vol. 34, No. 3, pp. 378-380, 2013.
[32] F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, H. Kalisch, A. Vescan, S. Member, M Heuken, and J. C. D. Jaeger, "Power Performance at 40 GHz on Quaternary Barrier InAlGaN/GaN HEMT," IEEE Electron Device Letters, Vol. 34, No. 8, pp. 978-980, 2013.
[33] S. D. Nsele, L. Escotte, J. G. Tartarin, and S. Piotrowicz, "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," International Conference on Noise and Fluctuations, pp. 1-4, 2013.
[34] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, and S. Tripathy, "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, Vol. 35, No. 10, pp. 992-994, 2014.
[35] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, S. H. Sung, G. Yang, R. S. Chau, "High-Performance Low-Leakage Enhancement-Mode High-K Dielectric GaN MOSHEMTs for Energy-Efficient, Compact Voltage Regulators and RF Power Amplifiers for Low-Power Mobile SoCs," 2015 Symposium on VLSI Technology, pp. T202-T203, 2015.
[36] C. W. Tsou, C. Y. Lin, Y. W. Lian, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon with High Johnson’s Figure-of-Merit," IEEE Transactions on Electron Devices, Vol. 62, No. 8, pp. 2675-2678, 2015.
[37] D. Marti, S. Tirelli, V. Teppati, L. Lugani, J. F. Carlin, M. Malinverni, N. Grandjean, and C. R. Bolognesi, "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon with Regrown Ohmic Contacts," IEEE Electron Device Letters, Vol. 36, No. 1, pp. 17-19, 2015.
[38] F. Medjdoub, N. Herbecq, A. Linge, and M. Zegaoui, " High frequency high breakdown voltage GaN transistors," IEEE International Electron Devices Meeting, pp. 9.2.1-9.2.4, 2015.
[39] P. D. Christy, Y. Katayama, A. Wakejima, and T. Egawa, "High fT and fMAX for 100 nm unpassivated rectangular gate AlGaN/GaN HEMT on high resistive silicon (111) substrate," Electronics Letters, Vol. 51, No. 17, pp. 1366-1368, 2015.
[40] H. Tingting, D. Shaobo, L. Yuanjie, G. Guodong, S. Xubo, W. Yuangang, X. Peng, and F. Zhihong, "70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax >160GHz," Journal of Semiconductors, Vol. 37, No. 2, pp. 024007(1-4), 2016.
[41] J. S. Moon, R. Grabar, M. Antcliffe, H. Fung, Y. Tang, and H. Tai, "High-Speed FP GaN HEMT with fT /fMAX of 95/200 GHz," Electronics Letters, Vol. 54, Iss. 10, pp. 657-659, 2018.
[42] S. Dai, Y. Zhou, Y. Zhong, K. Zhang, G. Zhu, H. Gao, Q. Sun, T. Chen, and H. Yang, "High fT AlGa(In)N/GaN HEMTs Grown on Si with a Low Gate Leakage and a High On/Off Current Ratio," IEEE Electron Device Letters, Vol. 39, No. 4, pp. 576-579, 2018.
[43] L. Li, K. Nomoto, M. Pan, W. Li, A. Hickman, J. Miller, K. Lee, Z. Hu, S. J. Bader, S. M. Lee, J. C. M. Hwang, D. Jena, and H. G. Xing, "GaN HEMTs on Si with Regrown Contacts and Cutoff/Maximum Oscillation Frequencies of 250/204 GHz," IEEE Electron Device Letters, Vol. 41, No. 5, pp. 689-692, 2020.
[44] P. Murugapandiyan, A. Mohanbabu, V. R. Lakshmi, M. Wasim, and K. M. Sundaram, "Investigation of Quaternary Barrier InAlGaN/GaN/AlGaN Double-Heterojunction High-Electron-Mobility Transistors (HEMTs) for High-Speed and High-Power Applications," Journal of Electronic Materials, Vol. 49, pp. 524–529, 2020.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明