博碩士論文 106522052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.238.94.194
姓名 林宛姿(Wan-Zi Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 衛星地面整合網路之隨機接入前導訊號設計與偵測
(Random Access Preamble Design and Detection for Satellite-Terrestrial Integrated Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ SatPolicy: 基於Trustzone的衛星政策執行系統★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統
★ 衛星地面網路中基於物理層安全的CSI保護方法★ 在無線感測網路中連續型物體的偵測與追蹤協定之設計
★ 在車用無線網路中利用虛擬地標的封包繞徑協定★ 在無線感測網路下處理不同重要性區域的覆蓋問題
★ 在車用網路環境下分散式計程車呼叫協定★ 車用無線網路車輛密度偵測方法
★ 在車用無線網路中利用適應道路分割法提供區域性階層式定位服務★ 在無線感測網路中以延長網路生命週期為目的之避洞繞徑協定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為滿足全球覆蓋的網路需求,衛星──地面整合網路 (satellite-terrestrial integrated networks) 被視為是一個具有前景的作法。此場景下,相對較低延遲的低軌道(low-earth orbit, LEO)衛星星座扮演相當 重要的角色。低軌衛星覆蓋範圍大、移動速度快等特性,會產生延遲不確定性、都卜勒偏移,對隨機接入(random access, RA)前導訊號(preamble)的傳輸造成影響,導致難以成功偵測前導訊號或無法取得前導訊號正確的時間延遲。在本文中,我們提出一個新的前導訊號 DRMS(double root merging sequence, DRMS),並推導在不同載波頻率偏移(carrier frequency offset, CFO)、子載波間距 (subcarrier spacing, SCS)、訊號長度下,相關性峰值的位移量。基於推導結果,我們設計出相對應的前導訊號偵測方法。模擬結果說明 DRMS 能夠消除時頻偏移的影響,並且能在大幅載波頻率偏移下維持前導訊號偵測的效果。
摘要(英) The promising satellite-terrestrial integrated network has been considered to meet the network requirement of global coverage. Low earth orbit (LEO) constellations with respective low latency take a large part in this scenario. The characteristics of broad coverage, fast-moving speed results in delay uncertainty and Doppler shift to random access (RA) preamble, which will lead to poor time estimation and preamble detection rate. In this paper, we proposed a double-root RA preamble sequence, DRMS, which concatenating K ZC sequences with the same root index while superposing another root ZC sequence. We derived peak offsets caused by Doppler shift by carrier frequency offset (CFO), subcarrier space (SCS), and concatenation number K. Based on the derived peak offset, we designed a preamble detection scheme for DRMS. The simulation result shows that the DRMS can mitigate the impact of timing/frequency offset and maintains the preamble detection performance even under a large CFO.
關鍵字(中) ★ 衛星-地面
★ 5G 網路
★ 隨機接入
★ 前導訊號
★ 都卜勒偏移
關鍵字(英) ★ Satellite-Terrestrial
★ 5G Network
★ Random Access
★ Preamble
★ Doppler shift
論文目次 Contents
中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related Work 4
2.1 Without frequency compensation . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Frequency compensation at UE end . . . . . . . . . . . . . . . . . . . . 4
2.3 Frequency compensation at satellite end . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Zadoff-Chu sequences as RA preamble for NTN . . . . . . . . . . . . . . 7
3.2 Correlation properties of ZC sequences . . . . . . . . . . . . . . . . . . 7
3.2.1 General correlation properties . . . . . . . . . . . . . . . . . . . 7
3.2.2 Correlation property affected by CFO . . . . . . . . . . . . . . . 8
3.3 CFO in different satellite beam sizes . . . . . . . . . . . . . . . . . . . . 10
3.3.1 The range of normalized CFO in a specific beam . . . . . . . . . 10
iv
4 System Model 12
5 Methodology 14
5.1 Concatenated ZC sequence under large CFO . . . . . . . . . . . . . . . . 14
5.2 Preamble design of doubled-root merging seqeunce (DRMS) . . . . . . . 18
5.3 Preamble detection and timing estimation . . . . . . . . . . . . . . . . . 19
5.3.1 Correlation computation . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Preamble detection . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.3 Timing delay estimation . . . . . . . . . . . . . . . . . . . . . . 21
6 Simulation 22
6.1 Preamble configuration under different satellite beams . . . . . . . . . . 22
6.1.1 Preamble duration . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Cyclic shift offsets for DRMS . . . . . . . . . . . . . . . . . . . 23
6.2 Performance of different preamble design . . . . . . . . . . . . . . . . . 23
6.2.1 Impact of normalized CFO . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Impact of multi-user . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3 Impact of SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Conclusion 27
Bibliography 28
參考文獻 [1] NR; Solutions for NR to support non-terrestrial networks (NTN), 3GPP, Dec. 2019, TS 38.821 V1.1.0.
[2] NR; Physical channels and modulation, 3GPP, Sep. 2020, TS 38.211 V16.3.0.
[3] NR; Study on New Radio (NR) to support non-terrestrial networks, 3GPP, Sep. 2020, TS 38.811 V15.4.0.
[4] G. Cui, Y. He, P. Li, and W. Wang, “Enhanced timing advanced estimation with symmetric zadoff-chu sequences for satellite systems,” IEEE Communications Letters, vol. 19, no. 5, pp. 747–750, 2015.
[5] L. Zhen, H. Qin, B. Song, R. Ding, X. Du, and M. Guizani, “Random access preamble design and detection for mobile satellite communication systems,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 280–291, 2018.
[6] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, and P. Xiao, “Energyefficient random access for leo satellite-assisted 6g internet of remote things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114–5128, 2020.
[7] T. Sun, L. Zhen, G. Lu, and K. Yu, “Random access preamble design and detection for 5g remote health via satellite communications,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2020, pp. 1–6. 28
[8] C. Zhang, W. Cao, Z. Yang, K. Tian, and N. Zhang, “Random access preamble design for large frequency shift in satellite communication,” in 2019 IEEE 2nd 5G World Forum (5GWF). IEEE, 2019, pp. 659–664.
[9] M. Hua, M. Wang, W. Yang, X. You, F. Shu, J. Wang, W. Sheng, and Q. Chen, “Analysis of the frequency offset effect on random access signals,” IEEE Transactions on communications, vol. 61, no. 11, pp. 4728–4740, 2013. [10] M. Hua, M. Wang, K. W. Yang, and K. J. Zou, “Analysis of the frequency offset effect on zadoff–chu sequence timing performance,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 4024–4039, 2014.
[11] R.-A. Pitaval, B. M. Popovic, F. Berggren, and P. Wang, “Overcoming 5g prach capacity shortfall by combining zadoff-chu and m-sequences,” in 2018 IEEE International Conference on Communications (ICC). IEEE, 2018, pp. 1–6.
[12] E-UTRA Random Access Preamble Design, 3GPP, Mar. 2006, document R1-060998, TSGRAN WG1 #44bis.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明