博碩士論文 106523008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.216.28.250
姓名 王致傑(Jie-Jay Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 一種結合支持向量機與卷積神經網路的架構以降低HEVC計算複雜度之研究
(Computation Reduction of HEVC Intra Prediction using combined SVM and CNN)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-11-11以後開放)
摘要(中) 隨著科技的高速發展與使用者越來越多的需求,高解析度的影像逐漸充斥了人們的生活。為了能夠更高效率的壓縮這些巨大的視頻資料量,HEVC採用了一些更新穎的技術,如編碼樹單元、碼率失真最佳化等等,但於此同時也造成了編碼計算複雜度的提升。本論文結合近幾年來十分熱門的深度學習與機器學習,即卷積神經網路與支持向量機,將其應用於HEVC編碼單元深度決策。不同於原始HEVC遞迴運算編碼單元深度0至3,本論文在編碼一開始時先使用支持向量機將編碼單元分成單調區塊與複雜區塊,再利用卷積神經網路分層向下細分。分類完成的區塊將只會進行特定深度的編碼並提前終止後續的編碼計算,藉此節省編碼其他深度所需的運算時間。而後進一步將支持向量機的結果導入卷積神經網路模型,設計一個映射函數使其修正模型的預測判斷。最終實驗結果顯示,與HEVC相比,整體平均BDBR上升0.66%的情況下,編碼時間大約可以節省49%。
摘要(英) With the rapid development of technology and the increasing requirements of users, high-resolution images are gradually filling our lives. In order to compress huge amounts of video data more efficiently, HEVC utilizes some newer technologies, such as coding tree units (CTU), rate distortion optimization (RDO), etc., but it also increases a lot of computation complexity at the same time. In this thesis, we combine the deep learning (DL) which is popular in recent years and the machine learning (ML), scilicet convolutional neural network (CNN) and support vector machine (SVM), applying them to the depth decision of coding units in HEVC. Different from the original HEVC which computes the depth of coding units 0 to 3 recursively, we first divide CTU into homogeneous blocks and complex blocks with SVM, and then classifying them hieratically by CNN models. The classified blocks will only encode at some specific depths and terminate calculations of encoding in advance, thus saving the computation time of other encoding depths. After that, the results of SVM are imported into CNN models, and some mapping functions are designed to modify the prediction of these models. The final experimental results in this thesis show that the overall average BDBR rises by 0.66%, and the encoding time can be saved by 49%.
關鍵字(中) ★ 高效率視頻編碼
★ 畫面內預測
★ 支持向量機
★ 卷積神經網路
★ 碼率失真最佳化
★ 編碼單元
★ 快速深度決策
關鍵字(英) ★ HEVC
★ Intra Prediction
★ SVM
★ CNN
★ RDO
★ CU
★ Fast Depth Decision
論文目次 目錄
第一章、緒論 1
1.1 高效率視頻編碼(High Efficiency Video Coding)標準介紹 1
1.2 HEVC編碼架構介紹 2
1.2.1 HEVC架構 2
1.2.2 碼率失真代價函數 3
1.2.3 編碼單元(Coding Unit) 5
1.2.4 預測單元(Prediction Unit) 6
1.2.5 量化參數(Quantization Parameter) 7
1.3 支持向量機(Support Vector Machine)介紹 9
1.3.1 機器學習(Machine Learning) 9
1.3.2 支持向量機介紹 10
1.4 卷積神經網路(Convolutional Neural Network)介紹 13
1.4.1 深度學習之類神經網路 14
1.4.2 倒傳遞神經網路演算法 16
1.4.3 深度神經網路(Deep Neural Network)介紹 18
1.4.4 卷積神經網路(Convolutional Neural Network)介紹 19
1.5 深度學習框架TensorFlow介紹 23
1.5.1 深度學習框架介紹 23
1.5.2 TensorFlow優缺點 25
1.5.3 TensorRT 26
1.6 研究動機與目的 27
1.7 論文架構 27
第二章、相關文獻回顧 28
2.1 減少CU編碼複雜度相關文獻回顧 28
2.1.1 利用紋理特徵減少CU編碼複雜度相關文獻回顧 28
2.2 利用SVM減少CU編碼複雜度相關文獻回顧 36
2.2.1 Computational Complexity Reduction for HEVC Intra Prediction with SVM 36
2.3 利用CNN減少CU編碼複雜度相關文獻回顧 49
2.3.1 A Deep Convolutional Neural Network Approach for Complexity Reduction on Intra-Mode HEVC 49
2.3.2 Asymmetric-Kernel CNN Based Fast CTU Partition for HEVC Intra Coding 55
第三章、結合SVM與CNN應用於編碼區塊快速深度決策演算法 62
3.1 整體系統架構 62
3.1.1 前處理階段 63
3.1.2 訓練階段 65
3.1.3 測試階段 71
3.2 快速深度決策演算法 80
3.2.1 快速深度決策演算法流程 80
3.2.2 效能分析 82
3.3 性能探討 88
3.3.1 卷積神經網路模型性能討論 88
3.3.2 總體模型性能比較 91
第四章、結合學習進階探討 95
4.1 結合學習 95
4.1.1 卷積神經網路與支持向量機之特徵分析 95
4.1.2 深度學習與結合學習之比較 98
4.2 可調式決策閾值 106
4.2.1 閾值曲線函數優化 106
4.2.2 可調式閾值效能分析 112
第五章、結論與未來展望 117
參考文獻 118
參考文獻 [1] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
[2] “Generic coding of moving pictures and associated audio information,” ISO/IEC 13818-2: Video (MPEG-2), May 1996.
[3] “Coding of audio-visual objects - Part 2: Visual,” in ISO/IEC 14496-2 (MPEG-4 Visual Version 1), Apr. 1999.
[4] “Video coding for low bit rate communication, version 1,” ITU-T recommendation H.263, 1995.
[5] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 15(HM15) Encoder Description,” JCTVC-Q1002, JCT-VC Meeting, Valencia, ES,
[6] G. J. Sullivan, J.R. Ohm, W.J. Han and T. Wiegand,” Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. CSVT, vol. 22, no. 12, Dec. 2012.
[7] K. CHEN, X. ZENG, Y. FAN, “CNN Oriented Fast CU Partition Decision and PU Mode Decision for HEVC Intra Encoding”, International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 Oct.-3 Nov. 2018
[8] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, D. Wang, “CU Partition Mode Decision for HEVC Hardwired Intra Encoder Using Convolution Neural Network”, IEEE Transactions on Image Processing, Vol 25, pp.5088-5103, 18 August 2016
[9] K. Kim, W. W. Ro, “Fast CU Depth Decision for HEVC Using Neural Networks”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 29, pp.1462-1473, 21 May 2018
[10] J. Gu, M. Tang, J. Wen, Y. Han, “Adaptive Intra Candidate Selection With Early Depth Decision for Fast Intra Prediction in HEVC”, IEEE Signal Processing Letters, Vol 25, pp.159-163, 26 October 2017
[11] Y. Li, Z. Liu, X. Ji, D. Wang, “CNN Based CU Partition Mode Decision Algorithm for HEVC Inter Coding”, pp.993-997, International Conference on Image Processing (ICIP), Athens, Greece, 7-10 Oct. 2018
[12] D. L. D. Trang, K. Kim, I. J. Chang, J. Kim, “Texture Characteristic based Fast Algorithm for CU Size Decision in HEVC Intra Coding”, pp.88-93, International Conference on Integrated Circuits, Design, and Verification (ICDV), Hanoi, Vietnam, 5-6 Oct. 2017
[13] Z. Feng, P. Liu, K. Jia, K. Duan, “HEVC Fast Intra Coding Based CTU Depth Range Prediction”, pp.551-555, International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27-29 June 2018
[14] Y. Zhang, G. Wang, R. Tian, M. Xu, C. C. J. Kuo, “Texture-classification Accelerated CNN Scheme for Fast Intra CU Partition in HEVC”, pp.241-249, Data Compression Conference (DCC), Snowbird, UT, USA, USA, 13 May 2019
[15] S. Kuanar, K.R. Rao, Christopher Conly, “Fast Mode Decision In Hevc Intra Prediction, Using Region Wise CNN Feature Classification”, IEEE International Conference on Multimedia & Expo Workshops (ICMEW), San Diego, CA, USA, 23-27 July 2018
[16] X. Liu, Y. Li, D. Liu, P. Wang, L. T. Yang, “An Adaptive CU Size Decision Algorithm for HEVC Intra Prediction Based on Complexity Classification Using Machine Learning”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 29, pp.144-155, 27 November 2017
[17] T. Zhang, M. T. Sun, D. Zhao, W. Gao, “Fast Intra-Mode and CU Size Decision for HEVC”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 27, pp.1714-1726, 20 April 2016
[18] S. J. Cai,” Reduction of Computation Complexity for HEVC Intra Prediction with Support Vector Machine”, National Central University, Master Thesis, Jun 2017
[19] T. Li, M. Xu, X. Deng, “ A Deep Convolutional Neural Network Approach for Complexity Reduction on Intra-Mode HEVC”, pp.1255-1260, International Conference on Multimedia and Expo (ICME), Hong Kong, China, 31 August 2017
[20] J. Shi, C. Gao, Z. Chen, “ Asymmetric-Kernel CNN Based Fast CTU Partition for HEVC Intra Coding”, International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, Japan, 01 May 2019
[21] D. T. Dang-Nguyen, C. Pasquini, V. Conotter, G. Boato, RAISE – A Raw Images Dataset for Digital Image Forensics, ACM Multimedia Systems, Portland, Oregon, March 18-20, 2015
[22] G. Schaefer and M. Stich ”UCID: an uncompressed color image database”, Proc. SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004, (18 December 2003)
[23] E. Agustsson, R. Timofte, “NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study”, pp.1122-1131, Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 24 August 2017
[24] D.P. Kingma, L.J. Ba, “Adam: A Method for Stochastic Optimization”, pp., International Conference on Learning Representations (ICLR), San Diego, 2015
指導教授 林銀議(Yin-Yi Lin) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明