博碩士論文 106523027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:34.200.236.68
姓名 粘郁潔(Yu-Chieh Nien)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於立方體投影的360度視訊編碼之位元分配
(Bit Allocation for Cubemap Projection for 360-degree Video Coding)
相關論文
★ 應用於車內視訊之光線適應性視訊壓縮編碼器設計★ 以粒子濾波法為基礎之改良式頭部追蹤系統
★ 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法★ 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法
★ 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之多視角視訊編碼★ 基於改良式可信度傳遞於同質區域之立體視覺匹配演算法
★ 以階層式Boosting演算法為基礎之棒球軌跡辨識★ 多視角視訊編碼之快速參考畫面方向決策
★ 以線上統計為基礎應用於CGS可調式編碼器之快速模式決策★ 適用於唇形辨識之改良式主動形狀模型匹配演算法
★ 以運動補償模型為基礎之移動式平台物件追蹤★ 基於匹配代價之非對稱式立體匹配遮蔽偵測
★ 以動量為基礎之快速多視角視訊編碼模式決策★ 應用於地點影像辨識之快速局部L-SVMs群體分類器
★ 以高品質合成視角為導向之快速深度視訊編碼模式決策★ 以運動補償模型為基礎之移動式相機多物件追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-8-1以後開放)
摘要(中) 360度視訊可提供使用者身臨其境的三維視覺體驗,但現有的視訊編碼器多以二維長方形影像為輸入,因此須先將360度視訊的三維球體域資料投影至二維平面再進行視訊編碼。等距長方投影(equirectangular projection, ERP)及立方體投影(cubemap projection, CMP)為目前360度視訊最常使用之二維投影格式,而立方體投影因幾何失真度較低因此編碼效率較佳,但目前卻未有針對編碼立方體投影格式的位元率控制(rate control)之位元分配(bit allocation)設計。因此,本論文提出基於立方體投影的360度視訊編碼之位元分配方案,其分成兩部分,第一部分為基於支援向量機(support vector machine, SVM)的立方體投影之高編碼代價區域偵測,參考每一最大編碼單元(largest coding unit, LCU)之紋理複雜、動量、動量密集度、與沿時間軸動量方向變異性,以支援向量機(SVM)偵測高代價最大編碼單元(LCUs)。第二部分則以經由曲面擬合(surface fitting)所得之函式分配每一面(face)的高代價最大編碼單元與非高代價最大編碼單元之位元。實驗結果顯示本論文所提出之演算法優於原始HM16.16之參考軟體所採用之R-λ model 的位元率控制,平均BDBR下降3.24%,平均BDWS-PSNR上升0.13dB。
摘要(英) 360-degree videos provide users immersive visual experiences. Since most video encoders take two-dimensional rectangular images as inputs, the three-dimensional sphere domain data of 360-degree videos must be projected onto the two-dimensional image plane before video coding. The eqirectangular projection (ERP) and cubemap projection (CMP) are the most commonly used 2D projection formats of 360-degree videos, where the cubemap projection enables better coding performance because of it has smaller geometric distortions. Since currently there are not any bit allocation schemes proposed for video coding of the cubemap projection, this thesis proposes a bit allocation scheme that consists of two parts for video coding of the CMP. First, high coding cost largest coding units (LCUs) of six faces of the CMP are detected using support vector machine (SVM), referring to the texture complexity, motion vector magnitude, motion density, and temporal variance of motion. Second, bit allocation between high coding cost LCUs and non-high coding cost LCUs is applied by functions attained by surface fitting of coding statistics based on HEVC/H.265. Experimental results show that our proposed performance is better than HM16.16 with R-λ model. with 2.256% BDBR decrease and 0.13 dB BDPSNR increase.
關鍵字(中) ★ 360度視訊
★ 立方體投影
★ 位元率控制
★ 位元分配
★ 高編碼代價區域偵測
關鍵字(英) ★ 360 degree video
★ cubemap projection
★ rate control
★ bit allocation
★ detection of high coding cost regions
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究方法 3
1.4 論文架構 3
第二章 360度視訊編碼(360-degree Video Coding)介紹 4
2.1 高效能視訊編碼(High Efficiency Video Coding, HEVC)簡介 4
2.1.1 高效能視訊編碼(HEVC)之架構 4
2.1.2 高效能視訊編碼之編碼基本單元 5
2.2 基於HEVC 之360度視訊編碼支援功能 7
2.2.1 360度視訊投影格式 8
2.2.2 360度視訊客觀品質量測 10
2.3 360度視訊編碼發展現況 12
2.4 總結 12
第三章 基於HEVC之360度視訊編碼位元率分配方案介紹 13
3.1 位元率控制之基本原理 13
3.1.1 位元分配(Bit Allocation) 13
3.1.2 量化參數決策(Determination of Quantization Parameter) 14
3.2 360度視訊編碼之位元分配技術現況 14
3.3 總結 15
第四章 本論文所提出之立方體投影格式編碼的位元分配方案 16
4.1 本論文所提出之位元分配之流程 16
4.2 本論文所提出之高編碼代價區域偵測 17
4.3 本論文所提出基於立方體投影之最大編碼單元的位元分配 27
4.4 總結 31
第五章 實驗結果與分析 32
5.1 實驗環境與參數設定 32
5.2 本論文方案之之實驗結果與分析 35
5.3 總結 45
第六章 結論與未來展望 46
參考資料 47
參考文獻 [1] N. Greene, “Environment mapping and other applications of world projections,” IEEE Comput. Graph. Appl., vol. CGA-6, no. 11, pp. 21-29, Nov. 1986.
[2] B. Li, H. Li, L. Li, and J. Zhang, “λ domain rate control algorithm for high efficiency video coding,” IEEE Trans. Image Process., vol. 23, no. 9, pp. 3841-3854, Sep. 2014.
[3] B. Li, L. Song , R. Xie , and W. Zhang, “Weight-based bit allocation scheme for VR videos in HEVC,” in Proc. IEEE Visual Communications and Image Processing, pp. 1-4, Dec. 2017.
[4] Y. Liu, M. Xu, C. Li, S. Li, and Z. Wang, “A novel rate control scheme for panoramic video coding ,” in Proc. IEEE International Conference on Multimedia and Expo, pp. 691-696, July 2017.
[5] C.-C. Wang and C.-W. Tang, “Region-based rate control for 3D-HEVC based texture video coding,” Journal of Visual Communication and Image Representation, vol. 54, pp. 108-122, July 2018.
[6] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Proc. the Fifth annual Workshop on Computational Learning Theory, pp. 144-152, July 1992.
[7] J. A. Hartigan and M. A. Wong, “A K-means clustering algorithm,” Applied Statistics, vol. 28, no. 1, pp.100-108, 1979.
[8] G. J. Sullivan, J.R. Ohm, W.J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Sep. 2012.
[9] ISO/IEC JTC 1/SC 29/WG 11, “Algorithm descriptions of projection format conversion and video quality metrics in 360 Lib,” Doc JVET-E1003, Geneva, Jan. 2017.
[10] Equirectangular projection, https://en.wikipedia.org/wiki/Equirectangular_projection
[11] Cubemap, https://en.wikipedia.org/wiki/Cube_mapping
[12] ISO/IEC JTC1/SC29/WG11, “AHG8: WS-PSNR for 360 video objective quality evaluation,” Doc JVET-D0040, Oct. 2016.
[13] ISO/IEC JTC1/SC29/WG11, “AhG8: Suggested testing procedure for 360-degree video,” Doc JVET-D0027, Chengdu, China, Oct. 2016.
[14] ISO/IEC JTC1/SC29/WG11, “Test conditions for 360 Video,” Doc JVET-D0193, hengdu, Oct. 2016.
[15] Y. Wang, Y. Li, D. Yang, and Z. Chen, “A fast intra prediction algorithm for 360-degree equirectangular panoramic video,” in Proc. IEEE Visual Communications and Image Processing, Dec. 2017.
[16] Y. He, Y Ye , P. Hanhart, and X. Xiu, “Motion compensated prediction with geometry padding for 360 video coding,” in Proc. IEEE Visual Communications and Image Processing, Dec. 2017.
[17] Y. Li, J.Xu, and Z. Chen, “Spherical domain rate-distortion optimization for 360-degree video coding,” in Proc. IEEE International Conference on Multimedia and Expo, July 2017.
[18] G. Ren, P. Li, and G. Wang, “A novel hybrid coarse-to-fine digital image stabilization algorithm,” Inform. Technol. J., vol. 9, no. 7, pp. 1390-1396, July 2010.
[19] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Magazine, vol. 15, pp. 74-90, Nov. 1998.
[20] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd edition, Publisher: Prentice Hall, Jan. 2002.
[21] Y.F. Ma and H.-J. Zhang, “A model of motion attention for video skimming,” in Proc. IEEE International Conference on Image Processing, vol. 1, pp. 129-132, Sep. 2002.
[22] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, “A subjective study of viewer navigation behaviors when watching 360-degree videos on computers,” in Proc. IEEE International Conference on Multimedia Expo, USA, July 2018.
[23] ISO/IEC JTC 1/SC 29/WG 11, “JVET common test conditions and software reference configurations,” Doc. JVET-L1010, Macau, Oct. 2018.
[24] ISO/IEC JTC 1/SC 29/WG 11, “AHG8: InterDigital test sequences for virtual reality video coding,” Doc. JVET-D0021, Chengdu, Oct. 2016.
[25] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inform. Process. Manage., vol. 45, no. 4, pp. 427-437,July 2009.
[26] G. Bjontegaard, “Calculation of average PSNR differences between RD-Curves,” Doc. VCEG-M33, Austin, US, April 2001.
指導教授 唐之瑋(Chih-Wei Tang) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明