博碩士論文 106523046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.226.245.48
姓名 陳柏臣(Po-Chen Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 考量使用者互動之DDPG行動邊緣網路無線資源管理
(DDPG Based Radio Resource Management for User Interactive Mobile Edge Networks)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-20以後開放)
摘要(中) 隨著網路流量快速的成長,根據Cisco報告指出2022年時的流量將會是2017年8倍的,而且影像類型的應用所產生的流量占整體的80%。另外第五代通訊的來臨,由於系統的靈活度以及可調性,第五代通訊系統將會允許更多種極端類型的應用服務,例如高速傳輸的高畫質影片、極低延遲的即時串流服務或混合型的線上虛擬實境遊戲,因此下一代的行動通訊即將面臨更壅塞以及更複雜的網路環境。因此第五代通訊的資源排程問題會相對過往的複雜很多,許多論文致力於提出最佳的資源排程方式,研究結果顯示絕大數的機器學習方式都更適合傳統的排程方式。而有一部分文章除了使用機器學習的方式外更加入了環境的分析協助機器學習做出更佳的排程決策。本篇文章,運用了Google DeepMind所開發之DDPG機器學習演算法在多基地台網路環境中排程資源,並透過邊緣雲端伺服器對所有基地台下達資源分配的指令。另外,我們加入了分組的機制,並透過DIBR以及MBMS的技術提高頻寬的使用效率。從實驗結果可知我們的機器學習方法相較於單一的排成方式雖然不能達到最高的傳輸速率,但是在使用者滿足的方面我們提出的學習方法可以達到最高的滿足率。
摘要(英) The traffic flow grows rapidly in recent years. According to Cisco report, the network traffic of 2022 will be more than 8 times of 2017, and the traffic flow generated by image-type application will occupy up to 80% of total traffic flow. In addition the 5G system’s characteristic of flexibility and adjustability let the 5G system allow to serve more different application with different request and characteristic, e.g., The ultra-high video, video streaming and online interactive virtual reality gaming. So that next generation mobile communication system is going to face a higher congestion and higher complexity network environment. Therefore, the resource scheduling problem is more complicate than the past. Many papers devoted to proposing the best resource scheduling scheme. The results show the machine learning are more suitable for the 5G network. There are some papers analyze the network environment to assist the machine learning to make better scheduling decision. In this article, the DDPG, a machine learning algorithm developed by Google DeepMind is used to schedule resources in a multi-base network environment, and allocate resources to all base stations through the edge cloud server. In addition, we have added a grouping mechanism to improved bandwidth usage efficiency through DIBR and MBMS technologies. From the experimental results, we can see that our machine learning method cannot achieve the highest transmission rate compared with the single arrangement method, but the learning method proposed by the user can achieve the highest satisfaction rate.
關鍵字(中) ★ 第五代通訊系統
★ 資源排程
★ 機器學習
★ 邊緣雲端
關鍵字(英) ★ 5G system
★ resource scheduling
★ machine learning
★ edge cloud
論文目次 1 Introduction
1.1 Background . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . 1
1.3 Contribution . . . . . . . . . . . . . . . 2
1.4 Framework . . . . . . . . . . . . . . . . .2
2 Background and Related Works
2.1 Machine Learning . . . . . . . . . . . . . 3
2.2 5G Mobile Edge Networks . . . . . . . . . .3
2.3 Depth Image-Based Rendering and Multimedia Broadcast Multicast Service . . . . . . . . . . . . . . .4
2.4 Related Works . . . . . . . . . . . . . . .5
3 User Interactive Radio Resource Management
3.1 System Model and Problem Formulation . . .10
3.1.1 System Model . . . . . . . . . . . . . .10
3.1.2 Problem Formulation . . . . . . . . . . 11
3.2 DDPG Based 3D Radio Resource Scheduling . 14
3.2.1 State . . . . . . . . . . . . . . . . . 14
3.2.2 Action . . . . . . . . . . . . . . . . .14
3.2.3 Reward . . . . . . . . . . . . . . . . .17
3.3 User Interaction and Grouping . . . . . . 18
3.3.1 Interactive . . . . . . . . . . . . . . 18
3.3.2 Grouping . . . . . . . . . . . . . . . .19
4 Implementation
4.1 Framework . . . . . . . . . . . . . . . . 21
4.2 Scenario . . . . . . . . . . . . . . . . .22
4.3 Base Station Setting . . . . . . . . . . .23
4.4 DDPG Parameter . . . . . . . . . . . . . .23
5 Performance Evaluation
5.1 Macro Cells Scheduling . . . . . . . . . .25
5.2 Small Cells Scheduling . . . . . . . . . .27
6 Conclusion and Future Work . . . . . . . . .30
Bibliography . . . . . . . . . . . . . . . . .31
參考文獻 [1] J. Park, P. Popovski, and O. Simeone. Minimizing latency to support vr social interactions over wireless cellular systems via bandwidth allocation. IEEE Wireless Communications Letters, 7(5):776–779, Oct 2018.

[2] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max M¨uhlh¨auser. Service entity placement for social virtual reality applications in edge computing. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pages 468–476, 2018.

[3] M. Chen, W. Saad, and C. Yin. Virtual reality over wireless networks: Quality-of-service model and learning-based resource management. IEEE Transactions on Communications, 66(11):5621–5635, Nov 2018.

[4] J. Guo, X. Gong, J. Liang, W. Wang, and X. Que. An optimized hybrid unicast/multicast adaptive video streaming scheme over mbms-enabled wireless networks. IEEE Transactions on Broadcasting, 64(4):791–802, Dec 2018.

[5] Y.-C. Chou S.-C. Tseng, Z.-W. Liu and C.-W. Huang. Radio resource scheduling for 5g nr via deep deterministic policy gradient. IEEE International Conference on Communications Workshops (ICC WS), 2019.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015.

[7] M. Chen, W. Saad, and C. Yin. Resource management for wireless virtual reality: Machine learning meets multi-attribute utility. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–7, Dec 2017. 31

[8] M. Chen, W. Saad, C. Yin, and M. Debbah. Echo state transfer learning for data correlation aware resource allocation in wireless virtual reality. In 2017 51st Asilomar Conference on Signals, Systems, and Computers, pages 1852–1856, Oct 2017.

[9] Jar-Ferr Yang, Shih-Cheng Chang, and Chin-Yun Chen. Computation reduction for motion search in low rate video coders. IEEE Transactions on Circuits and Systems for Video Technology, 12(10):948–951, Oct 2002.

[10] J. Lee, D. Yang, Y. Chen, and W. Liao. Efficient multi-view 3d video multicast with depth-image-based rendering in lte-advanced networks with carrier aggregation. IEEE Transactions on Mobile Computing, 17(1):85–98, Jan 2018.

[11] Y. Mori, N. Fukushima, T. Fujii, and M. Tanimoto. View generation with 3d warping using depth information for ftv. In 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pages 229–232, May 2008.

[12] 3GPP TS 23.501. System Architecture for 5G System. Technical report.

[13] Ali E Abbas. Constructing multiattribute utility functions for decision analysis. In Risk and Optimization in an Uncertain World, pages 62–98. INFORMS, 2010.

[14] Ali E Abbas. Wimax forum, mobile wimax – part i: A technical overview and performance evaluation. August. 2006.

[15] Raj Jain. Channel models: A tutorial. In WiMAX forum AATG, pages 1–6, 2007.
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明