博碩士論文 106524007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.230.154.160
姓名 邱歆雅(Shin-Ya Chiou)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 基於學生練習使用回饋之學習成效預測模型與動態題數練習機制
(Implement a Dynamic Exercise Mechanism Based on Learning Effectiveness Prediction Model)
相關論文
★ 探索電玩遊戲頻率對於視覺注意力表現能力的效應★ 代理表現學習模式—以動物同伴為例
★ 常用邏輯句型重組之學習★ 電腦支援國小數學文字題擬題活動初探
★ 解釋數學:透過科技支援創作與討論以增強小學生的數學溝通能力★ 提問式鷹架教學結合數位閱讀寫作系統對國小低年級學生語文能力的影響
★ 數學島:興趣驅動之國小數學線上平台設計與初步評估★ 以「猜擬題」活動增進學生數學文字題解題能力
★ 透過主題地圖與寵物同伴促進閱讀更深更廣的書籍★ 具推薦書籍功能之閱讀島系統架構設計
★ 透過學生影片創作進行國小數學學習:趣創者理論之應用★ 英文單字樂園:學生自創字卡搭配複習機制強化英文字彙學習之系統設計及學習成效初探
★ 設計與實作明日寫作系統增進國小學生寫作表現★ 設計與實作數位化教室環境的教室伺服器
★ 在亞卓市教案編輯系統中設計學校本位教案發展之模組★ 數位教室環境下小組學習範例設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於許多電腦輔助學習系統會使用回饋來幫助學生學習,但卻發生一個問題:「學生常常濫用回饋」。部分學生不是因為學會所學概念而前往下一階段,而是透過不斷的要求系統回饋而順利進行通關,導致並未學習到該學習的知識內容。因此,本研究希望能透過精熟學習理論與適性化學習的方式,訂定一個精熟門檻,給予每位學生動態的練習題數,讓已經完成基本練習題數並通過精熟門檻的學生,不需要進行額外的練習,可直接進入下一階段,而未通過精熟門檻的學生,給予加強練習,期望能提高學生的精熟程度與對數學概念的理解。
  本研究於「數學島」系統中進行實驗,於實驗第一階段,將學生分為固定練習組(控制組)與動態練習組(實驗組),運用固定練習組學生使用的回饋等級與學習成效評量之歷史資料建立熟練度預測模型。根據預測模型建立動態題數練習機制,動態調整給予動態練習組學生練習的題目數量,希望學生在完成練習後,皆能夠精熟學習內容。而本研究建立不同的預測模型,期望找出能夠準確預測學習成效評量之預測模型。
  研究結果發現,有修正的預測模型比無修正的預測模型準確,使用回饋等級序列與回饋等級總數熟練度預測模型皆能夠準確預測學習成效評量。而就練習總題數來看,動態練習組學生之學習成效評量表現與固定練習組學生接近,由此可知,動態題數練習機制可以精準地預測學習成效評量。
摘要(英) Many computer-assisted learning systems adopt immediate feedback to help students learning. However, the problem has been occurred that students using feedback inappropriately. Some students got passed to the next stage by constantly requesting for system feedback instead of actually learning the studying concepts which lead to fewer learn the content knowledge on the mathematics. In this study, we reference by mastery learning theory and adaptive learning to set a threshold of mastery. The threshold of mastery can give each student a dynamic number of exercises. So, students who have completed basic exercises and passed the threshold of mastery can go to the next stage without additional exercises. Otherwise, students who have not passed the threshold of mastery, the system will give them strengthened exercises to improve students′ mastery levels and their understanding of mathematical concepts.
This study was conducted in the "Math Island" system. In the first phase of the experiment, students were divided into two groups, the fixed-practice group (control group) and the dynamic-practice group (experimental group). The proficiency prediction model was established by utilizing the historical data of feedback level and learning effectiveness evaluation used by the students in the control group. According to the prediction model, a dynamic exercise mechanism was established and the number of exercises given to the dynamic-exercise group by dynamic adjust. This study hoped that the students will be able to master the learning content after completing the exercises by dynamic exercise mechanism. Moreover, this study also established different prediction models to find an appropriate prediction model that can accurately predict the evaluation of learning effectiveness.
The results show that the revised prediction model is more accurate than the non-revised one, and the proficiency prediction model using the sequence of feedback levels and the total number of feedback levels can accurately predict the evaluation of learning effectiveness. As far as the total number of exercises is concerned, the performance of the students in the dynamic-practice group is close to the fixed-practice group. It is found that the dynamic exercise mechanism can accurately predict the evaluation of learning effectiveness.
關鍵字(中) ★ 回饋
★ 動態題數練習機制
★ 精熟學習
★ 適性化學習
關鍵字(英) ★ Feedback
★ Mastery Learning
★ Dynamic Exercise mechanism
★ Adaptive learning
論文目次 目錄 iv
圖目錄 vii
表目錄 ix
一、緒論 1
1-1  研究背景與動機 1
1-2  研究目的 2
1-3  研究問題 3
1-4  論文架構 3
二、文獻探討 5
2-1  精熟學習 5
2-2  適性化學習系統 9
2-3  電腦輔助教學的回饋機制 12
三、系統與活動設計 17
3-1  系統開發與架構 17
3-2  系統功能介紹 17
3-2-1數學島 17
3-2-2動態題數練習機制 21
3-3  活動流程 22
四、研究方法 25
4-1  研究設計 25
4-2  研究對象 26
4-3  實驗單元與任務 26
4-4  實驗流程 28
4-4-1實驗第一階段 29
4-4-2實驗第二階段 30
4-5  資料蒐集與模型建立 31
4-5-1資料蒐集 31
4-5-2模型建立 32
4-6  資料分析 47
4-6-1實驗第一階段 47
4-6-2 實驗第二階段 48
五、研究結果與討論 51
5-1  實驗第一階段 51
5-1-1練習總題數之學習成效評量表現 51
5-1-2簡單、中等、困難練習之學習成效評量表現 53
5-1-3 預測模型的準確性 57
5-2  實驗第二階段 58
5-2-1 資料分布情況 58
5-2-2 迴歸分析 62
5-2-3預測模型的預測準確性評估 66
六、結論與未來展望 85
6-1  結論 85
6-2  研究限制 86
6-3  未來工作 87
參考文獻 91
附錄一、十次交叉驗證法之相關分析與均方誤差結果 97
參考文獻 丁健仁(民94)。「精熟學習」策略對學生學習成效之分析。國立臺灣師範大學物理學系在職進修碩士班碩士論文,台北市。 取自https://hdl.handle.net/11296/2tasr4
王沛清(民100)。以精熟學習理論和雙碼理論發展數位化教學策略之研究以國民中學數學科為例。國立彰化師範大學工業教育與技術學系博士論文,彰化縣。 取自https://hdl.handle.net/11296/3fm3z2
孫宗麒(民100)。電腦輔助教學應用於國小新移民子女數學補救教學之研究-以柱體體積單元為例。國立臺中教育大學特殊教育學系碩士在職專班碩士論文,台中市。 取自https://hdl.handle.net/11296/74q47s
張嘉恩(民105)。結合情境與精熟學習之數位遊戲式學習系統對國小因數概念學習成效影響之研究。國立臺北教育大學數學暨資訊教育學系(含數學教育碩士班)碩士論文,台北市。 取自https://hdl.handle.net/11296/zkyx87
陳坤木(民83)。電腦輔助學習在國民小學學生數學科精熟學習應用之研究。國立台南師範學院初等教育學系碩士論文,台南市。 取自https://hdl.handle.net/11296/e63vqd
陳麗華(民76)。精熟學習模式及其在國小數學科教學上之效果研究。國立臺灣師範大學教育研究所碩士論文,台北市。取自https://hdl.handle.net/11296/a2p95m
裘素菊(民92)。電腦輔助教學對國小中重度智能障礙兒童實用語文合作學習成效之研究。國立花蓮師範學院特殊教育教學碩士班碩士論文,花蓮縣。 取自https://hdl.handle.net/11296/g55499
劉艾玲(民104)。設計一款遊戲軟體對學生進行乘法概念補救教學。國立臺北教育大學資訊科學系碩士班碩士論文,台北市。 取自https://hdl.handle.net/11296/5ry84w
滕春麗(民99)。精熟學習策略配合數位化診斷系統對高工學生數學科學習成效之研究。國立政治大學應用數學系數學教學碩士在職專班碩士論文,台北市。 取自https://hdl.handle.net/11296/53fe9x
Anderson, S. A. (1992). A Mastery Learning Experiment.
Atif, Y., Benlamri, R., & Berri, J. (2003). Learning objects based framework for self-adaptive learning. Education and Information Technologies, 8(4), 345-368.
Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of the effects of feedback in computer-based instruction. Journal of Educational Computing Research, 13(2), 111-127.
Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004, April). Off-task behavior in the cognitive tutor classroom: when students game the system. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 383-390). ACM.
Baker, R. S., De Carvalho, A. M. J. A., Raspat, J., Aleven, V., Corbett, A. T., & Koedinger, K. R. (2009, June). Educational software features that encourage and discourage “gaming the system”. In Proceedings of the 14th international conference on artificial intelligence in education (pp. 475-482).
Bangert-Drowns, R. L., Kulik, C. L. C., Kulik, J. A., & Morgan, M. (1991). The instructional effect of feedback in test-like events. Review of educational research, 61(2), 213-238.
Block, J. H., & Burns, R. B. (1976). 1: Mastery learning. Review of research in education, 4(1), 3-49.
Bloom, B. S. (1968). Learning for Mastery. Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Evaluation comment, 1(2), n2.
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational researcher, 13(6), 4-16.
Boticario, J., Santos, O., & Van Rosmalen, P. (2005). Issues in developing standard-based adaptive learning management systems.
Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User modeling and user-adapted interaction, 6(2-3), 87-129.
Brusilovsky, P. (1998). Methods and techniques of adaptive hypermedia. In Adaptive hypertext and hypermedia (pp. 1-43). Springer, Dordrecht.
Brusilovsky, P., & Sosnovsky, S. (2005, June). Engaging students to work with self-assessment questions: A study of two approaches. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 251-255). ACM.
Brusilovsky, P., Schwarz, E., & Weber, G. (1996, June). ELM-ART: An intelligent tutoring system on World Wide Web. In International conference on intelligent tutoring systems (pp. 261-269). Springer, Berlin, Heidelberg.
Brusilovsky, P., Sosnovsky, S., & Yudelson, M. (2006, June). Addictive links: The motivational value of adaptive link annotation in educational hypermedia. In International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 51-60). Springer, Berlin, Heidelberg
Burgers, C., Eden, A., van Engelenburg, M. D., & Buningh, S. (2015). How feedback boosts motivation and play in a brain-training game. Computers in Human Behavior, 48, 94-103.
Chi, M. T. (1996). Constructing self‐explanations and scaffolded explanations in tutoring. Applied Cognitive Psychology, 10(7), 33-49.
Chou, C. Y., Huang, B. H., & Lin, C. J. (2011). Complementary machine intelligence and human intelligence in virtual teaching assistant for tutoring program tracing. Computers & Education, 57(4), 2303-2312.
Chou, C. Y., Lai, K. R., Chao, P. Y., Lan, C. H., & Chen, T. H. (2015). Negotiation based adaptive learning sequences: Combining adaptivity and adaptability. Computers & Education, 88, 215-226.
Cimino, A. (1980). Mastery Learning in Your Classroom. A Handbook for an Approach to an Alternative Learning Strategy. Centering On.
Clark, C. R., Guskey, T. R., & Benninga, J. S. (1983). The effectiveness of mastery learning strategies in undergraduate education courses. The Journal of Educational Research, 76(4), 210-214.
Corbett, A. T., & Anderson, J. R. (2001, March). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 245-252). ACM.
Dempsey, J. V., Driscoll, M. P., & Swindell, L. K. (1993). Text-based feedback. Interactive instruction and feedback, 21-54.
Elawar, M. C., & Corno, L. (1985). A factorial experiment in teachers′ written feedback on student homework: Changing teacher behavior a little rather than a lot. Journal of educational psychology, 77(2), 162.
Epstein, M. L., Lazarus, A. D., Calvano, T. B., Matthews, K. A., Hendel, R. A., Epstein, B. B., & Brosvic, G. M. (2002). Immediate feedback assessment technique promotes learning and corrects inaccurate first responses. The Psychological Record, 52(2), 187-201.
Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: an evidence-based review (No. w23744). National Bureau of Economic Research.
Gilman, D. A. (1969). Comparison of several feedback methods for correcting errors by computer-assisted instruction. Journal of Educational Psychology, 60(6p1), 503.
Guskey, T. R. (1990). Cooperative mastery learning strategies. The Elementary School Journal, 91(1), 33-42.
Guskey, T. R. (2007). Closing achievement gaps: revisiting Benjamin S. Bloom′s “Learning for Mastery”. Journal of advanced academics, 19(1), 8-31.
Hicks, B. L., & Hyde, D. C. (1973). Teaching about CAI. Journal of teacher education, 24(2), 120-125.
Hsiao, I. H., Sosnovsky, S., & Brusilovsky, P. (2010). Guiding students to the right questions: adaptive navigation support in an E‐Learning system for Java programming. Journal of Computer Assisted Learning, 26(4), 270-283.
Karampiperis, P., & Sampson, D. (2005). Adaptive learning resources sequencing in educational hypermedia systems. Journal of Educational Technology & Society, 8(4), 128-147.
Koffman, E. B., & Blount, S. E. (1975). Artificial intelligence and automatic programming in CAI. Artificial intelligence, 6(3), 215-234.
Kozma, R. B., & Bangert-Drowns, R. L. (1987). Design in Context: A Conceptual Framework for the Study of Computer Software in Higher Education.
Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response certitude. Educational Psychology Review, 1(4), 279-308.
Kulik, C. L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning programs: A meta-analysis. Review of educational research, 60(2), 265-299.
McNeil, J. D. (1969). 2: Forces Influencing Curriculum. Review of Educational Research, 39(3), 293-318.
Mevarech, Z. R. (1985). The effects of cooperative mastery learning strategies on mathematics achievement. The Journal of Educational Research, 78(6), 372-377.
Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional science, 32(1-2), 99-113.
Paiva, R. C., Ferreira, M. S., & Frade, M. M. (2017). Intelligent tutorial system based on personalized system of instruction to teach or remind mathematical concepts. Journal of Computer Assisted Learning, 33(4), 370-381.
Paramythis, A., & Loidl-Reisinger, S. (2003). Adaptive learning environments and e-learning standards. In Second european conference on e-learning (Vol. 1, No. 2003, pp. 369-379).
Perkowitz, M., & Etzioni, O. (1997, August). Adaptive web sites: an AI challenge. In IJCAI (1) (pp. 16-23).
Popescu, E., Badica, C., & Moraret, L. (2010). Accommodating learning styles in an adaptive educational system. Informatica, 34(4).
Pridemore, D. R., & Klein, J. D. (1995). Control of practice and level of feedback in computer-based instruction. Contemporary Educational Psychology, 20(4), 444-450.
Roper, W. J. (1977). Feedback in computer assisted instruction. Programmed learning and educational technology, 14(1), 43-49.
Sales, G. C. (1993). Adapted and adaptive feedback in technology-based instruction. Interactive instruction and feedback, 14, 159-175.
Schimmel, B. J. (1983). A Meta-Analysis of Feedback to Learners in Computerized and Programmed Instruction
Schloss, P. J., Wisniewski, L. A., & Cartwright, G. P. (1988). The differential effect of learner control and feedback in college students′ performance on CAI modules. Journal of Educational Computing Research, 4(2), 141-150.
Tseng, J. C., Chu, H. C., Hwang, G. J., & Tsai, C. C. (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51(2), 776-786.
Vanlehn, K. (2006). The behavior of tutoring systems. International journal of artificial intelligence in education, 16(3), 227-265.
Wager, W., & Wager, S. (1985). Presenting questions, processing responses, and providing feedback in CAI. Journal of Instructional Development, 8(4), 2-8.
指導教授 陳德懷(Tak-Wai chan) 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明