博碩士論文 106552015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.204.56.104
姓名 韓豫(Han Yu)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 應用集群分析探究學習模式對學習成效之影響
(Applying Cluster Analytics to Explore the Effect of Learning Pattern on Learning Performance)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用序列探勘分析影片瀏覽模式對學習成效的影響★ 一個以服務品質為基礎的網際服務選擇最佳化方法
★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例
★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響
★ 數位註記對學習者在線上學習環境中反思等級之影響★ Web 2.0 社交網站的開發與實作:以國立中央大學e-Portfolio為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於資訊和通信技術的快速發展,行動裝置設備變得非常普遍,因此也產生了許多網路上的學習課程,這意味者獲取知識是隨手可得的。例如:國立中央大學的系統Open edX,是為了提供學生能夠即時且不因地區限制,隨時隨地的學習或做課程的複習、討論等,使學生可以透過開放式的教學平台有效提升學習成效。從教師的觀點而言,可以將學生的學習過程實質的歸納或統計成為數據,然後對此學生的學習資訊進行更有效率的分析。
在本研究中,我們設計了一個基於Lag-sequential Analysis、K-means Clustering和Hierarchical Agglomerative Clustering的分析程序。我們的目標是透過使用Open edX系統紀錄中選定的特定班級學生操作紀錄,作為主要的分析樣本。
應用所設計的分析程序對於萃取高學習成效和低學習成效之間的學習差異非常有效,因此教師可利用此方法協助低學習成效的學生在學習過程中的早期階段避免學習遇到的困難。
摘要(英) Owing to the rapid development of Information and Communication Technology, mobile devices became extremely popular, and therefore, it is convenient to take a e-learning course. For example, in National Central University, the system “Open edX” is provided for students for ubiquitous learning. From a teacher’s viewpoint, he/she can digitize the learner behavior and then make analytics. In this thesis, we design a procedure of analytics based on Lag-sequential Analysis, K-means Clustering, and Hierarchical Agglomerative Clustering. We aim at clustering students who were attending courses by using Open edX. In particular, The procedure of analytics is useful for discovering the distinction between low and high performance. As a result, teachers can help the low-performance students to overcome barriers in an early stage.
關鍵字(中) ★ 學習操作行為
★ 滯後序列分析
★ 叢集式分群分析
★ 階層式分群分析
★ 開放式教育平台
關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iiv
圖目錄 vi
表目錄 viii
1 緒論 1
1.1研究背景與動機 1
1.2研究目的 1
1.3問題研究 2
2 文獻探討 3
2.1方法探討 3
2.2序列分析(Sequential Analysis) 3
2.2.1滯後序列分析(Lag-sequential Analysis, LSA)介紹 3
2.3集群分析(Clustering) 4
2.3.1叢集式分群分析(K-means Clustering, K-means)介紹 4
2.3.2階層分群法(Hierarchical Agglomerative Clustering, HAC)介紹 5
3 研究方法 6
3.1資料收集 6
3.1.1資料介紹 6
3.1.2資料內容 6
3.2資料分析流程 7
3.2.1資料紀錄 7
3.2.2資料狀態定義 10
3.2.3資料狀態架構 12
3.3資料分析 14
3.3.1找出整體學習序列 14
3.3.2區分整體學習模式 15
3.3.3各群學習模式分析 15
4 實驗結果與討論 16
4.1步驟1:尋找整體學習模式 16
4.2步驟2:整體學習模式分群 26
4.3步驟3:萃取群集學習模式 28
4.4步驟4:衍生探討 31
5 結論、研究限制及未來研究 39
5.1結論 39
5.2未來研究 39
參考文獻 41
參考文獻 Celonis-Tools.https://www.celonis.com/intelligent-business-cloud(retrieved: 2019/01/15).
Lag-Sequential-Analysis.http://blog.pulipuli.info/2017/10/behavior-analysis-lag-sequential.html(retrieved: 2018/12/10).
Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2016). Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17-29.
Chien, T. C., Chen, Z. H., & Chan, T. W. (2017). Exploring long-term behavior patterns in a book recommendation system for reading. Journal of Educational Technology & Society, 20(2), 27-36.
Hou, H. T. (2011). A case study of online instructional collaborative discussion activities for problem-solving using situated scenarios: An examination of content and behavior cluster analysis. Computers & Education, 56(3), 712-719.
Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
Hwang, G. J., Hsu, T. C., Lai, C. L., & Hsueh, C. J. (2017). Interaction of problem-based gaming and learning anxiety in language students′ English listening performance and progressive behavioral patterns. Computers & Education, 106, 26-42.
Jovanović, J., Gašević, D., Dawson, S., Pardo, A., & Mirriahi, N. (2017). Learning analytics to unveil learning strategies in a flipped classroom. The Internet and Higher Education, 33(4), 74-85.
Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers in Human Behavior, 72, 757-770.
Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & education, 104, 18-33.
Li, L. Y., & Tsai, C. C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education, 114, 286-297.
Maldonado-Mahauad, J., Pérez-Sanagustín, M., Kizilcec, R. F., Morales, N., & Munoz-Gama, J. (2018). Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses. Computers in Human Behavior, 80, 179-196.
Pohl, M., Wallner, G., & Kriglstein, S. (2016). Using lag-sequential analysis for understanding interaction sequences in visualizations. International Journal of Human-Computer Studies, 96, 54-66.
Tempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408-420.
Yang, T. C., Chen, S. Y., & Hwang, G. J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377.
指導教授 楊鎮華 審核日期 2019-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明