博碩士論文 106552022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.93.74.227
姓名 呂艾珊(Ai-Shan Lu)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 應用序列探勘分析影片瀏覽模式對學習成效的影響
(Applying Sequence Mining to Analyze the Effect of Video Viewing Pattern on Learning Performance)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 一個以服務品質為基礎的網際服務選擇最佳化方法
★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例
★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響
★ 數位註記對學習者在線上學習環境中反思等級之影響★ Web 2.0 社交網站的開發與實作:以國立中央大學e-Portfolio為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來網際網路的快速發展,線上學習平台掀起了一個浪潮,促使了大規模開放線上課程(Massive Open Online Courses, MOOCs)的興起,也就是「磨課師」,學生只需連上網路,學習則可以不受時間、地點的限制。MOOCs紀錄學生的線上學習操作動作,例如說影片觀看、測驗學習、討論區互動…等,目前這些紀錄只有一般的描述性統計,MOOCs的統計資料還未有更深入的探討與分析,本研究針對這些統計資料作分析,探討學生的學習記錄是否影響他們的學習成效,找到影響學習成效的關鍵性行為,可作為後續課程的學生在影片學習過程中,老師可以給予適當的回饋及建議。
本研究針對MOOCs記錄的影片學習部份研究,探討學生在瀏覽影片時有哪些影片瀏覽模式,以及影片瀏覽模式如何影響學生的學習成效。本研究使用了三種方法論,使用滯後序列分析(Lag-sequential Analysis, LSA)方法,建構出不同學習成效之中學生的影片瀏覽模式;接著使用探索性因素分析(Exploratory Factor Analysis, EFA)方法將學生有哪些影片學習行為面向分類;最後使用多重因素分析(Multiple factor analysis, MFA)方法,找出學生在影片學習中,不同的學習成效在不同的學習行為面向中有哪些關鍵性的學習行為。
摘要(英) The rapid development of the Internet has created a wave of online learning platforms that have prompted the rise of Massive Open Online Courses (MOOCs). Students only need to connect to the Internet to learn without being restricted by time or place. MOOCs record students′ online learning operations, such as course video viewing, quiz learning, discussion forum interactions, etc. At present, these records are only general descriptive statistics, and the statistics of MOOCs have not been further explored and analyzed. In this study, we analyzed these statistics to explore whether students′ learning records affect their learning performances, and attempted to find the crucial video viewing patterns that would affect their learning performances so that teachers can give appropriate feedback and suggestions in the following courses.
This study used three methodologies. To begin with, the Lag-sequential Analysis was used to extract the viewing behavior from three groups of different learning performances in order to construct the categories of the students′ video viewing patterns. Next, the Exploratory Factor Analysis was employed to classify the diverse aspects of online video learning behavior. Finally, the Multiple Factor Analysis was applied to find out the crucial viewing motifs of the students from the three groups of different learning performances.
關鍵字(中) ★ 滯後序列分析
★ 探索性因素分析
★ 多重因素分析
★ 磨課師
★ 影片學習
關鍵字(英) ★ Lag-sequential Analysis
★ Exploratory Factor Analysis
★ Multiple Factor Analysis
★ MOOCs
★ video learning
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 vi
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
二、 文獻探討 3
2.1 磨課師的發展與挑戰 3
2.2 磨課師平台上分析影片觀看行為 3
2.3 使用滯後序列分析進行影片觀看行為序列探勘 3
三、 方法設計 (Methodology) 5
3.1 Course description 5
3.2 Dataset description 5
3.3 資料處理(Process of detecting video viewing patterns) 7
3.3.1 Preprocess phase 7
3.3.2 Detection phase 15
四、 實驗結果與討論 17
4.1 Step1 : 找出影片瀏覽基礎序列(Finding video viewing motifs) 17
4.2 Step2 : 建構影片瀏覽模式(Construct patterns from motifs) 22
4.3 Step3 : 萃取影片瀏覽模式(Extract video viewing patterns) 25
4.4 Step4 : 找出關鍵性的影片瀏覽模式(Finding critical viewing patterns) 28
五、 結論及未來研究 36
六、 參考文獻 39
參考文獻 〔1〕Yang, T. C., Chen, S. Y., & Hwang, G. J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377.
〔2〕Pohl, M., Wallner, G., & Kriglstein, S. (2016). Using lag-sequential analysis for understanding interaction sequences in visualizations. International Journal of Human-Computer Studies, 96, 54-66.
〔3〕Brinton, C. G., Buccapatnam, S., Chiang, M., & Poor, H. V. (2016). Mining MOOC clickstreams: Video-watching behavior vs. in-video quiz performance. IEEE Transactions on Signal Processing, 64(14), 3677-3692.
〔4〕Wang, F. H. (2017). An exploration of online behaviour engagement and achievement in flipped classroom supported by learning management system. Computers & Education, 114, 79-91.
〔5〕Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26-34.
〔6〕Pohl, M., Wallner, G., & Kriglstein, S. (2016). Using lag-sequential analysis for understanding interaction sequences in visualizations. International Journal of Human-Computer Studies, 96, 54-66.
〔7〕Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). Students′ online interactive patterns in augmented reality-based inquiry activities. Computers & Education, 78, 97-108.
〔8〕Hou, H. T., Sung, Y. T., & Chang, K. E. (2009). Exploring the behavioral patterns of an online knowledge-sharing discussion activity among teachers with problem-solving strategy. Teaching and Teacher Education, 25(1), 101-108.
〔9〕Li, L. Y., & Tsai, C. C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education, 114, 286-297.
〔10〕Hou, H. T. (2011). A case study of online instructional collaborative discussion activities for problem-solving using situated scenarios: An examination of content and behavior cluster analysis. Computers & Education, 56(3), 712-719.
〔11〕Thurstone, L. L. (1947). Multiple-factor analysis; a development and expansion of The Vectors of Mind.
〔12〕Kim, J., Guo, P. J., Seaton, D. T., Mitros, P., Gajos, K. Z., & Miller, R. C. (2014, March). Understanding in-video dropouts and interaction peaks in online lecture videos. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 31-40). ACM.
〔13〕Brinton, C. G., Chiang, M., Jain, S., Lam, H., Liu, Z., & Wong, F. M. F. (2014). Learning about social learning in MOOCs: From statistical analysis to generative model. IEEE transactions on Learning Technologies, 7(4), 346-359.
〔14〕Li, N., Kidziński, Ł., Jermann, P., & Dillenbourg, P. (2015). MOOC video interaction patterns: What do they tell us?. In Design for teaching and learning in a networked world (pp. 197-210). Springer, Cham.
〔15〕Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge university press.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2019-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明